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The manner by which topological symmetry breakdown leads to confinement in a 
non-Abelian gauge theory is discussed. 

1. Int roduct ion 

In a recent paper [1 ], ' t  Hooft has stressed the importance of  the center of  the 
group in non-Abelian gauge theories. This has exposed new concepts and created 
new possibilities for quark confinement.  The center of  SU(N) is Z(N), isomorphic 
to the set of  integers, 0, 1, 2 . . . .  , N -  1, under the operation of  addit ion modulo N. 
Z(N), with its finite number of  elements and unusual modulo addit ion proper ty ,  is 
a feature distinguishing non-Abelian theories from Abelian ones. It may be the 
crucial factor explaining why non-Abelian theories confine though Abelian theories 
do not. Instantons also differentiate SU(N) gauge theories. However, dilute instan- 
ton gases do not confine and dense instanton gases are hard to handle. The runaway 
scale and density problem has made instanton calculations virtually impossible to 
do. There are now conflicting views [2,3] on their relevance to physical processes, 
problems and confinement.  ' t  Hooft  Z(N) type excitations,  on the other hand, have 
only been discussed in a formal manner. The calculations remain to be done and it 
is unknown whether they will encounter similar difficulties. Thus, this is an impor- 
tant area of  research. This is what we will be discussing in this paper. In particular, 
we will show how some calculations, such as Wilson loop integrals, can be done in 
a manner similar to instanton ones. We will also discuss many physically interesting 
ideas although no computat ions will be done to support  them. 

Unlike ' t  Hooft ,  who used a Hamiltonian approach, we shall use a Euclidean 
formulation.  We find that  the properties of  Z(N) excitations are particularly simple 
from this point of view, especially when considering Wilson loops, where the effect 
of  the excitations is expressed in terms of linking numbers. 

* This work has been supported by the High Energy Physics Division of the United States De- 
partment of Energy under contract no. W-7405-ENG-48. 
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Although 't Hooft had suggested attacking the problem by going to a lattice and 
many people have begun considering Z(N) lattice gauge theories [4], we shall work 
in the continuum. 

't  Hooft discussed, in detail, but in a formal way, the nature of  confinement in 
2 + 1 dimensions. Here is a review of  how it works. One starts with an SU(N) gauge 
theory. Using a symmetry breaking Higgs potential, SU(N) is broken down to Z(N). 
Topological solitons can then occur. These are not so different from Nielsen-Olesen 
vortices [5] except that the non-zero gauge potentials are proportional to X a (for 
example) in the SU(3) case and more Higgs fields are involved. Away from a Nielsen- 
Olesen vortex, field configurations look like a gauge transformation, U(x), with 
g(x)  = exp(i40, so that A u = - ( i /e )[3uU(x)  ] u - l ( x )  and q~(x) = U(x)F(see sect. 3 
for notation). Likewise, ' t  Hooft vortices are approximately singular gauge trans- 
formations, Uxo(X) (x o is the location of  the soliton andx  is the point where the 
gauge transformation is applied). When Uxo(X) is written as exp [iy~8_l ai(x ) 1 ~Xi], 
that is, the fundamental matrix representation is used, Uxo(X ) has the property that 
when x encirclesx 0 and returns to x, Uxo(X) is an element of  the center of  the 
group. Such a transformation is multivalued (and globally ill-defined), however, 
when written in the adjoint representation (for example), it becomes single-valued. 
In 't  Hooft 's  model, gauge and Higgs fields are in the adjoint representation so that 
UxoOc ) is well-defined. If  (q~i (x)) = F i are a set of  vacuum expectation values which 
minimize the Higgs potential, then the classical configuration for an 't  Hooft Z(N) 
soliton at Xo is 

i 
a .  = - g  [a.Uxo(X)] Ux 1 (x) , 

and q~i(x) = Uxo(x)Fi far from the vortex. Of course, nearby the field configuration 
is non-trivial just as in the Nielsen-Olesen case. 

In 2 + 1 dimensions the above solitons are particles with extended structure and 
non-zero form factors. They are stable for topological reasons and carry a topological 
conserved charge. This charge is governed by the group, Z(N), which means that 
charge is conserved modulo N so that, in principle, N charges may annihilate. This 
Z(N) group is completely different from the one associated with the center of  SU(N) 
and should not be confused with it. There are now two Z(N)'s.  The one associated 
with the soliton charge will be called topological Z(N). ' t  Hooft argues that it may 
be possible that topological Z(N) is spontaneously broken, a phenomenon we call 
topological symmetry breakdown. This is an interesting phase in which quark con- 
finement occurs. The argument is as follows: if topological Z(N) is broken, then 
there are N different kinds of  vacuums characterized by their topological Z(N) num- 
bers (compare this to spontaneous symmetry breakdown of  a U(1) symmetry by a 
Higgs potential, where, instead, there is a continuum (a circle) of vacuums defined 
by the direction in which the Higgs field points). In general, at any instant in time, 
the physical vacuum will look like a collection of  domains each characterized by its 
Z(N) value. Separating these domains will be Bloch walls. They carry an energy per 



64 S. Samuel / Topological symmetry breakdown and quark confinement 

unit length and may be associated with a new quanta in the theory: closed strings. 
When particles in the fundamental representation are introduced, 't  Hooft argues 
that they will be confined. A quark and an antiquark will have a Bloch-wall-like 
string between them. This will provide a linear confining potential. For SU(3) three 
strings may join so that baryons can consist of three confined quarks. This is 't  
Hooft's 2 + 1 dimensional quark confinement scheme. He derived it using simple, 
physical, intuitive arguments. 

Several questions are generated. First is: how does one extend these notions to 
3 + 1 dimensions? Following the same line of reasoning there will be volumes of 
Z(N) vacua (instead of areas) and closed surfaces separating them (instead of closed 
strings). Clearly closed surfaces are unable to interpolate between quarks and create 
a linear potential as in one lower dimension. For this reason 't Hooft conjectured 
that confinement in 3 + 1 dimensions is different. Instead of proposing a confine- 
ment scheme, he settled for an operator algebra which allowed the determination of 
the different phases of the theory. One of the important results of our paper will be 
the extension of the 2 + 1 dimensional scheme to 3 + 1 dimensions. The reason we 
are able to do this is that in a Euclidean formulation of the 2 + 1 dimensional model 
we find a slightly different picture of the confinement, which has a straightforward 
generalization to one higher dimension. 

A second question is: how does one do calculations? 't ttooft has used formal 
powerful arguments, but it remains an open problem as to how to do computations. 
Of particular interest is the coefficient in front of the linear potential and its com- 
panion, the slope parameter. More generally, how does one calculate in a theory 
with topological symmetry breakdown? We are able to supply some of the answers. 
We treat the Nielsen-Olesen case in sect. 3 and the 't Hooft model in sect. 4. To do 
these calculations requires a new calculation method. We develop it in sect. 2. The 
problem is equivalent to treating a gas of closed loops. Similar problems arise in 
lattice field theories. Examples are the three-dimensional 0(2) classical Heisenberg 
model and the four-dimensional Abelian lattice gauge theory discussed by Banks, 
Myerson and Kogut [6]. These authors must deal with a gas of monopole loops. Om 
gas consists of Nielsen-Olesen or 't Hooft vortex loops. We treat such a system by 
developing a field theory to describe it. Very simple arguments then tell us about 
the quark-antiquark and three-quark potentials. Although our main interest is in 
topological symmetry breakdown and Wilson loop calculations, sect. 2 discusses 
several field theory phenomena in this new picture. These concepts are enumerated 
and briefly discussed. 

A third question is: what are the essential ingredients in 't Hooft's 2 + 1 dimen- 
sional confinement scheme? Certainly topological symmetry breakdown is one of 
them but are there others? We find the answer is yes. Topological symmetry break- 
down leads only to a logarithmic quark-antiquark potential unless another ingre- 
dient is also present. It is the monopole. The 't Hooft model has monopoles in it. 
They play an instrumental role in the quark confinement. Before topological sym- 
metry breakdown, the monopoles are bound together in monopole-antimonopole 
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pairs. These dipoles have little effect. Topological symmetry breakdown liberates 
these monopoles. They, in turn, confine charges in a manner not so different from 
Polyakov [7] and Mandelstam [8]. In sect. 7, we relate these ideas to Mandelstam's 
quark confinement scheme. The Z(N) confinement in 3 + 1 dimensions is practically 
the same as Mandelstam's. We consider this to be an important result: two seemingly 
different confinement schemes are, in fact, the same. 

The remaining open problems and questions (and there are several) are presented 
at the end. 

2. Closed-loop gas as a field theory 

This section will relate a gas of  closed continuous loops to a relativistic field 
theory *. Connections between statistical mechanics and field theory often prove 
useful [10]. We find this to be the case here and will use it to extract results in a 
physical and almost intuitive manner. 

We shall proceed in steps. Note, first, however, that a continuous curve, when 
broken into N segments, resembles a polymer with vertices acting as atoms and line 
segments acting as bonds (fig. 1). Sometimes this analogy is useful. Consider an 
open macromolecule (or polymer) which goes from Xo to xN via x 1, x2 ..... XN-I 
(fig. lb). To enforce the condition that the curve be continuous, we demand that 
the ith atom be near its two neighbors. This can be done by requiring two neighbor- 
ing atoms to be a distance e from each other, that is, the bonds have a fixed length, 
e. The total length is Are. Allowing curves of  different lengths means summing over 
N in the partition function. To make the model more physical, assume the atoms 
have a chemical potential,/~, and interact with a "strength" g to an external poten- 
tial, V(x). The grand partition function for a macromolecule with ends fixed a txo  
andxf  ~ x  N is 

Z(x o, xf)  = ~ exp(-{3tAV)ZN(Xo, x f ) ,  
N = I  

N - 1  

i = l  

N 

X exp[-/3 ~ gV(xi)] . 
i = l  

N 
HI-~(fXi'--Xi--~I[--6)- 1 . 4  (2.1) 

i = 1 -rte 2 

ZN, the partition function for a macromolecule with N + 1 atoms and N bonds, is 

Stone and Thomas have used such an analogy in ref. [9]. We prefer to rederive their result in 
a lattice-independent way. 
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Fig. 1. The macromolecule approximation. (a) A continuous curve between x 0 and xf, (b) the 
macromolecule approximation of (a), (c) a closed curve, and (d) its macromolecule approxima- 
tion. 

a summation (integration) over all positions of  intermediate atoms weighted by 
Boltzmann factors, exp [-~gV(xi)], with the constraint (the delta functions) that 
bonds have length, e. The factor, 1/4he 2, normalizes this so that given the position 
of  the ith atom, the integration over the location of  the (i + 1)th atom is unity.  
Modification of  this factor can always be absorbed in ~. As long as x f  and Xo are 
far apart and e is small, the sum over N effectively begins with the enormous value, 
No = Ixf - xo[/e. It does no harm to start the sum at N = 1. 

Eventually, we will take e to zero so as to recover continuous curves from seg- 
mented N-step ones. In this limit, ZN resembles a Feynman path integral. Path inte. 
grals have been widely used to account for the statistical properties of  macromole- 
cules [ 11 ]. We shall review this. As is common in statistical mechanics, one must 
coarse-grain: write N as nm with both n and m large, that is, break up the macro- 
molecule into rn units of n atoms. Consider the situation where e is small, n is large, 
but  x/he is also small. Then 

(v+l)n--l~[ 1 ( 3 ]3/2 

i:un 4~62 ~)([Xi-- Xi--l{ - e)'-~ \ 2"~-~e21 

X e x p [ -  3 Xvn-1)=) ( X o ' + I ) n  - -  (2.2) 
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In eq. (2.2) i = un to (u + 1)n 1 are the atoms in the vth unit. Eq. (2.2) is true 
because the left-hand side represents a random walk between xv,,-1 and X(u+l)n 
which by the Central Limit Theorem approaches a Gaussian. I fx /ne  is small com- 
pared to the distance over which V(x) varies appreciably, then V(x) may be treated 
as a constant in each unit. We obtain 

m--1 F( 3 ~3m/2 (Xv~Xv__l)21 ] 
Z = ~ [  I-I d3xu] exp 3 ne 2 JJ 

N = I  v = l  L\  2 ~ n ~ 2 1  v = l  

m m 

× e x p [ - ~  ~ nV(xv) - ~ ~ np] . (2.3) 
v = l  v = l  

The Xi'S have been relabelled so that xv is the average value o fx  in the pth cell. As e 
goes to zero, eq. (2.3) approaches a Feynman integral. Using the variables 

s =- ~ne2v, r =- ~e2N, (2.4) 

and the "bare" mass and coupling defined by 

m g -  6j3p 6g 
e2 , go = ~ - ,  (2.5) 

eq. (2.3) becomes 

,.g 

6 ? dr y y  c-l)x exp[-f (¼Y?(s)+mI +~goV(x(s)))ds] z=~ 
0 x(O)=x 0 o 

x(r) = x f 

(2.6) 

The sum over N has become an integral over z. 
Retnarks: (a) A bond-vector field interaction of  the form 

q(xi - Xi_l) ,H#(~i)  i 

1 + X i _ I )  is the average value o f x  along the bond). can also be considered (X i =-- ~(X i 
Tile effect is to add a term -~qfg~u(s)HU(x(s)) ds to the action in eq. (2.6). 

(b) Eq. (2.6) resembles the Green functions which arise in a particle dynamics 
representation of  a field theory [12]. 

(c) The factor 6/e 2 can be removed by normalizing Z appropriately (a sort of  
wave-function renormalization). In any case, physical quantities (averages) do not 
depend on the overall normalization of  Z. 

Summarizing, the Green functions, G(xf, Xo], which appear in a particle dynamics 
representation o f  a field theory, correspond to the grand partition functions o f  poly- 
mers with ends at x f  and Xo. The sum is over all continuous paths of  arbitrary shape 
and length. The mass squared is proportional to the chemical potential which must 
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be appropriately scaled to obtain a continuum limit. Other inputs are (a) that n 
large so that products of  delta functions approach Gaussians, (b) that v 'n  e -+ 0 so 
that Zxi e uni t  V(xi)  -'~ nV(x ) ,  and (c) that e ~ 0 so that segmented curves approach 
smooth ones. 

Representations such as eq. (2.6) are well-known to chemical physicists [11]. 
Eq. (2.6) is not a new result. We have rederived it as a warm-up for the next step: 
polymers in bulk. It is not hard to believe that a gas of  polymers might be describ- 
able as a Euclidean field theory, and we shall show this. We have known about this 
correspondence for some time and have thought about using it to obtain field 
theory results as in ref. [10]. Until the present application, this analogy did not 
seem fruitful because a gas of  closed loops is a complicated statistical system of 
which little is known. Fortunately, we shall not use the statistical mechanics side 
of  this analogy in an essential way. 

Now consider closed polymers, obtained by sett ingxf = Xo =-x in eq. (2.6). 
Allowing loops to be located anywhere necessitates integrating over x. There is, 
however, an overcounting problem. For a closed polymer of N atoms, it is im- 
possible to differentiate which atom was the starting point, that is, the N different 
starting points cannot be distinguished. For each configuration that begins at Xo, 
traces an N-fold segmented path and returns to Xo, there is one which begins at xi, 
traces out the self-same path, and returns to xi. Thus configurations are overcounted 
by a factor of  N. The partition function for a closed polymer of  arbitrary length and 
location is 

o o  

Z = d3x -~exp[-~gN]ZN(X,X) ,  (2.7) 

where ZN is given in eq. (2.1). Proceeding as before, we obtain 

/d~" (d3x 
T 

z= f f  C l ) x e x p [ - f  (}x2 +mg +~goV( x))ds] (2.8) 
0 x(O) = x o 

x(r) = x 

Finally, the grand partition function for the gas of  loops is 

o o  

~ = ~  1 
M=O ~ .  Z M = e x p Z  

= cE e x p ( - t r  ln[p 2 +rag +t3goV]} 

= ff.o exp{-f[3.0 a"O(x) + mg~b2(x) + (JgoV(x)O2(x)] d3x } .  (2.9) 

cr~ is an overall (infinite) normalization constant. We have used 

a 
[ e x p ( - a r ) -  exp( -b r ) ]  =_ /  dz exp ( - z r )  dr = - l n  . 

r - -  b 
o a o 
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The ill-defined innocuous extra piece, 

[ - f d  ? d r  )] exp 3x - -  exp(-br , 
T 

0 

is c~. The operator, iOu, is Pu and q~ is a scalar field. 
Remarks: (a) As usual, the infinity in tit is harmless since it derides out when 

calculating expectation values. 
(b) For oriented curves (that is, curves with a direction for which curves of dif- 

ferent direction are distinguishable) a functional integral over a complex (charged) 
field is obtained. The orientation direction is identified with the flow of charge. In 
general, a gas of T different types of macromolecules leads to a T-component field. 

(c) With oriented curves and a bond interaction, the action, 

A = f[ l(0 u - ieA,)¢l 2 + m2¢*¢] d 3 x ,  

can be obtained. 
(d) Interactions between atoms (and/or bonds) can be introduced using auxiliary 

fields. Suppose the interactions are of the form 

g2V(xi, xi) . 
all pairs 
of  a toms 

Define 

f a(x, y) vO,, z) d3y = 6 3 ( x - y ) .  

Then 
1 

f f~bx  exp{l~ fx (x )G(x ,y )x (y )  d3x day) 

xff*xff®  exp {-f[0u4~ 3u~+ too2+ 13goX(X)] dax } 

exp {½~f×(x) G(x,y) xO') dSx d3y } • (2.10) X 

This is verified by first doing the ~ integration to yield a gas of closed loops and then 
by doing the X integration. 

(e) In particular, a ¢4 theory corresponds to a repulsive interatomic delta-func- 
tion potential. 

(f) Three-dimensional scalar QED corresponds to a bond-bond interaction of the 
form 

e 2 ~ b • b'  
(2.10 

47rfl pairs of rbb' 
bonds,  
b and b' 
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In eq. (2.11) b = xi+ 1 - x i is the bond vector between the ith and (i + 1)th atoms, 
rbK is the distance between the two bonds, and the sum is over all pairs of  bonds. 
The interaction is attractive for antiparallel bonds and repulsive for parallel ones. 

(g) The Lagrangian, 

12=-½0.¢)  2 ~-m2~ ~ - 2 o _ figoXC~2 _ lfl(bttX)2 _ ~Pmx X I ~  2 2 , 

corresponds to attractive interatomic Yukawa potentials. When m x = 0, Coulomb 
interactions are obtained. 

(h) The method works in any dimension, of  course. 
(i) Our method can be applied to obtain local field theories for solitons [9,13]. 

As ref. [13] points out, perturbative expansion about vacuum expectation values 
misses soliton solutions. These extra solitons carry topological charges which are 
conserved. They generate closed loops in the appropriate dimension, via a macro- 
molecule analogy yield partition functions similar to Z N ( X ,  x )  of eq. (2.1) and Z of 
eq. (2.7), and therefore result in a field theory. Of course, the solitons interact with 
the original fields. This can be taken into consideration using auxiliary fields and 
Lagrange multipliers (as done in ref. [13]). The macromolecule technique would 
replace the left-hand side o feq .  (3.3) of  ref. [13] by 

o o  

1 z M  (2.12) 
M=0 a.~ 

with 

T 

o x(O)=x o (2.13) 
x(r)=x 

This would provide an alternative derivation to the one of appendix A of ref. [13]. 
Although the normalization of delta functions in eq. (2.1) is unknown and could 
generate an unknown mass parameter, rn~, our intuitive feeling is that rn~ = 0, 
although we cannot prove it. If  it were non-zero, the measure factors in going to a 
sum over trajectories, would determine it in terms of the parameters in the original 
Lagrangian. One might think that m~ could be the missing factor cancelling self- 
energy infinities found in ref. [13] (sect. 4), but we believe this is not the case. The 
infinities occur because near the soliton the Higgs field must go to zero. Expanding 
about non-zero Higgs field vacuum expectation values cannot deal with such a con- 
straint. Regardless, the mass, too, is geometrical in nature and has nothing to do 
with the soliton's physical mass. 

(j) The chemical potential per atom and rng are proportional. For mg < 0, the 
chemical potential is negative and loops will populate the vacuum indefinitely. 
When a symmetry breaking potential is used, repulsive delta-function potentials 
between atoms stabilize the proliferation of loops. Therefore, spontaneous sym- 
metry breakdown looks like a dense gas of  loops from the symmetric vacuum point 
of  view (the "spaghetti vacuum").  
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(k) Renormalization infinities occur because the macromolecule potentials corre- 
sponding to interacting relativistic field theories are singular. For example, a ~b a 
theory corresponds to repulsive delta-function potentials between atoms. This 
extremely short-ranged singular potential consequently ruins the coarse-graining 
procedure used in going from eq. (2.1) to (2.6). It will no longer be true that these 
"random walks" approach Gaussian distributions. A q~4 theory is not so different 
from the self-avoiding random-walk problem [1 1,14]. The non-Gaussian nature of  
this process is well-known [14]. This will lead to wave-function and mass renormal- 
ization as perturbation theory tries to approximate non-Gaussian processes by 
Gaussian ones. The singular nature of  potentials can also cause other problems. For 
attractive potentials, the interatomic forces might be too strong ("non-renormal- 
izability") and cause macromolecules to collapse into "balls of  wire". Perturbation 
theory is insensitive to the sign o f g  and therefore such effects manifest themselves 
for repulsive potentials, also. The higher the dimension of space-time, the more 
singular the forces. This is why fewer renormalizable theories occur in higher dimen. 
sions. 

3. Wilson loops in the presence of  topological vortices 

This section will calculate the Wilson loop in the presence of  a gas of  Nielsen- 
Olesen vortices [5]. Sect. 4 will treat 't  Hooft  Z(3) vortices. These calculations are 
similar to instanton calculations, where multiple instanton configurations generate 
a gas. Various computational devices have put instanton calculations on a solid 
foundation [7]. Statistical mechanics and physical intuition determine their proper- 
ties quite easily. This is how Callan, Dashen and Gross [2] are able to determine the 
magnetic properties of  a dense BPST [ 15] instanton gas. Contrast this with a vortex 
gas. The vortices may vary in number,  position and the way they are imbedded. 
They may twist in the most unruly manner. These complications lead one to think 
that such a system is too difficult to deal with: however, the methods of sect. 2 
make the problem tractable. We are able to do Wilson loop calculations. In fact, 
gases of  vortices are as easy to handle as gases of  instantons. We will show how cal- 
culations involving topological spontaneous symmetry breakdown are done. 

Take the Euclidean space version of  the 2 + 1 dimensional Nielsen-Olesen model 
[5]. This is scalar QED with a Higgs potential. The Lagrangian is 

22 = ¼F~vF uv + I(~ u - ieA~)<bl 2 + ~(qb*qb _ F2 )  2 , (3.1) 

and has vortex-like solutions along the third axis of  the form 

• (x) = f (p )  exp(iqS), A ~ ( x )  = a(p) ,  A z ( x )  = A o ( x )  = 0. (3.2) 

Cylindrical coordinates, p, z, 9, have been used. Graphs o f f ( p )  = [ qb(p)[ and Hz(P) 
are given in fig. 1 of re f .  [5]. 
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The important properties of  the solution are: 
(i) ((I)1, q~2) points radially outward from the vortex; 
(ii) [ q~(p)[ vanishes at the vortex (at p = 0) and goes to F f a r  from it (p = co); 
(iii) a(p) -+ l/ep for from the vortex. This means that the vortex contains a tube 

of  magnetic flux. The total flux is 

2rr 
• f d x  dyHz(x ,y )  = f A¢(p)p dO = 2rr/e. 

o 

Property (i) is topological in nature and makes the soliton topologically stable. 
Property (ii) has important implications (short-ranged ones and long-ranged 

ones). First, near the vortex where I ~(o)l = 0, the photon is effectively massless, 
whereas far away it has mass because the Higgs field has a vacuum expectation 
value. This is one way of  understanding why flux is channelled into tubes. There is 
a tubular "mass-confinement" bag. Also I ~5(p = 0) I = 0 indicates symmetry restora- 
tion in the vortex, a point which we shall discuss in detail later. Finally, we should 
mention that the Higgs field prevents the vortex from collapsing to zero size and 
gives it a finite mass. Secondly, the Higgs field at infinity must take on vacuum 
expectation values and be covariantly constant. The latter means that Ao(p) is 
determined in terms of  the phase, X, of  the Higgs field. A u is pure gauge and 
X(x) - X(Y) = ef  y Au dx u. Whenever y loops around a circle and returns to x the 
phase, X, must be an integral multiple of  2rr. This causes the flux to be quantized. 
We shall return to this point in sect. 8. 

Property (iii) contains the physics: the vortices are quantized tubes of  magnetic 
flux. This is the key physical characteristic. 

The vortex soliton has a topological number, which can be seen in two ways: 
using gauge potentials or using Higgs fields *. Of course, the two are interrelated. 
In terms ofAu,  consider exp [iefYx A • dx].  Such a pure phase takes values on the 
unit circle in the complex plane. Fix x and move y around the vortex as in fig. 2. In 
regions where Au is pure gauge and the Higgs field is covariantly constant, 
exp[iefYA • dx] must return to 1 w h e n y  returns t o x .  This forms a map from a 
circle in Euclidean space to the unit complex circle. These maps are characterized 
by winding numbers, rr I (S 1) = Z, the set of  integers. Winding numbers count the 
number of  times the image curve loops around the unit circle. Regions of  space with 
~r 1 = 1 or rr I = - 1  contain a vortex or an antivortex. 

In terms of  the Higgs field the topology is as follows: far away l~l  must be F, 
that is, q~(x) must take on values which minimize the potential, X(q~* ~ - F2)2;  
they form a circle of  minima. Again consider moving y around a closed curved (fig. 
2). Then ~(v)  forms a map from a circle in Euclidean space to a circle (of  minima). 
Again these maps are characterized by 7r1(S 1) = Z. 

This review of vortex topological properties is similar to that of Goddard and Olive who eluci- 
date the topological properties of monopoles in ref. [ 16 ]. 
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Fig. 2. A vortex. This is a cross section of the vortex in the 1-2 plane. The 3rd axis is out of 
the paper. 

Because winding number is invariant under continuous deformations (homo- 
topies), winding number can neither be created nor destroyed unless an (unallowed?) 
discontinuity occurs in field configuration. This provides the topological stability of 
the vortices. 

In three-dimensional space-time, orient the vortex lines. The orientation indicates 
the direction of the flux and the flow of topological charge. In this way antivortices 

r 

(a) 
_ l 

(b) 

J 
J 

(c) 

t 

(d) 

Fig. 3. Linking numbers. (a) The Wilson loop. Its width and length are r and t. (b), (c) and (d) 
show a vortex linking with this Wilson loop with linking numbers +1, -1 and +2, respectively. 
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act like particles travelling backward in time. Of course, vortices need not be straight 
lines. In general, they twist and curve in an arbitrary manner. Since they may never 
end, they form closed loops. If  they have a positive mass, these loops will be small, 
will act like neutral objects, and will have few physical consequences. In contrast, 
when their mass is negative, they fill up the vacuum and their effects can be dramatk 

Having reviewed the properties of  Nielsen-Olesen vortices, let us put a Wilson 
loop (with an arbitrary charge, q) in the system (see fig. 3a): 

<exp[iq ~ A  • dy]>. (3.3) 

"£3 

Consider a single vortex. What is its effect? Using Stoke's theorem (or simply phys- 
ical intuition), one sees that the Wilson loop measures the linking number [17] of  
the two curves. If the vortex links n times the contribution is exp [i(2rr/e) qn]. 
Examples with n = +1, - 1 ,  and +2 are shown in figs. 3b, c and d. For several vor- 
tices the contribution is exp [i(2rrq/e)(n+ - n_) ] ,  where n+ and n_ are the number 
of  positive and negative linkages. Idealize the situation to the case where vortices 
are thin (trace out curves rather than tubes) and are not mutually interacting. This 
can be rectified if the form of the interactions is known. For simplicity set the mass 
equal to zero. In the end, we will restore a non-zero mass. The linking number of  
two curves can be expressed as an integral [17]: 

n = - - -~ . f  dx " ['(x z Y) X d-Y (3.4) 
3 I x _ y l  3 " T / I  - -  

c 1 c 

Here, n is the number of  times C1 and C link. For several curves the total linking 
number with C is 

1 
dx " f .(xi - y )  N_dy . f dx  i (3 .5 )  n=~i - ~ f  , Jc Ix i -y l3  -~i  "B(x/) ,  

Ci Ci 

where 

1 f ( x - y )  Xdy 
B(x) : -U.  (3.6) 

Note that B(x) has the same form as the magnetic field produced by a current flow- 
ing in C. Take C to be the Wilson loop and think of  the C/as vortex loops. Using 
the method of  sect. 2, the calculation of  (3.3) in a gas of  idealized Nielsen-Olesen 
vortices is 

~ 1  f i I ? d Z i f d x i f  q)xi (exp[iq ~ A  " dy])=m~--o-~, r-~. 
i= 1 o ~((0)=xi 

xt('ri)=x i 
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× exp i)z + B"(x i) £ciu ds i same term with B u = 0] 
e 

t o 

ffc~t~ exp ( -  f l(O u - (i27rq/e) Bu) ~bl I } 

[same term with B u = O] 
(3.7) 

If  the vortices interact and have a mass, eq. (3.7) would be replaced by 

f fCl)~ exp { - f ( [~u  - (i2~rq/e)Bu) ~12 + m 2 ~* ~ + c)y(~* ~))} 

[same term with B u = O] 
(3.8) 

f c19(~* ~) might be, for example, 

e x p  [ - / . / I x  - y l ]  
fd3x fd3y ¢(x) 47fix - Y l  @*(y) ~(v) .  

This would correspond to a Yukawa interaction between points on the vortex. In 
any case cl~ must be a functional of  ~* (x) ~(x)  only. Given the interactions and 
mass of  vortices, the exact form of eq. (3.8) can be determined. In principle, rn 2 
and c)y(~* ~)  may be approximately deduced using semiclassical methods or per- 
haps by examining the Lagrangians of  ref. [l 3] in more detail. 

Of course ~ is the vortex field. In fact, inserting ~* (x )~ (y )  in the integrand of 
eq. (3.8) (with B u = 0 so that the Wilson loop is absent) and returning to a macro- 
molecule description, one obtains a gas of  closed vortices in the presence of one 
open one which starts a t x  and ends a t y .  Hence, ~* (x) produces the vortex end- 
point a tx  and ~(,v) destroys it a t y .  

Regardless of  the detailed nature of  q~(~* ~b), we can evaluate eq. (3.8) semi- 
classically for various cases. (i) When m 2 > 0, ~ = 0 is expected to be the vacuum. 
This is also the solution to the equations of  motion for a non-zero B u and the 
Wilson loop to this approximation is 1. Vortices do not contribute to the Wilson 
loop as expected. This is because for m 2 > 0 the vortices are small loops and rarely 
link with the Wilson loop. (ii) When m 2 < 0, there is topological symmetry break- 
down in topological charge. The vacuum fills up with vortices. Presumably clY(~* ~)  
contains repulsive forces which eventually stabilize the proliferation of  loops (an 
example is c)y(~ * ~b) = g~  * ~ ~ * ~ which corresponds to repulsive delta-function 
forces between points on vortices). ~ then acquires a vacuum expectation value, 
(~)  = ~0. Because the (denominator)  Lagrangian of eq. (3.8) is a function of 
~* ~(x), t~ o exp(i0) for 0 < 0 < 2~r are also action minima. Consider a long rect- 
angular Wilson loop of  width r and length t (fig. 3a). Trying ~ = ~o as a trial solu- 
tion yields 

(exp[ iqCA . d y ] ) ~ e x p [ - ( ~ ) 2 ' ~ Z o f d a x B 2 ( x ) l .  (3.9) 
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B(x) is given in eq. (3.6) and is the magnetic field created by two parallel wires with 
opposite current flowing through them. The evaluation of eq. (3.9) is a problem of 
undergraduate electromagnetism [ 18] : 

( 1 t  ~ fd 3x B 2 ~ 2t In r 
I 

ro 

The constant r o should be of the order of the vortex width, since thick vortices can 
partially intersect a Wilson loop and our idealized approximation breaks down. For 
q/e greater than 1, we can find screening-type solutions which better minimize the 
action. Let m be the nearest integer to q/e and set zXq = m - q/e. Let 

~(x) = exp[ix(x)] ~o , 

X(x) -m{  tan-I x-xly-el - t a n - I  x-x2/'Y-Y2 ) (3.10) 

where (xl, Yl) and (x2, Y2) are the (x, y) coordinates of the two lines comprising 
the Wilson loop. In eq. (3.10) m must be integer-valued so that X(x) is single-valued 

v(~) 

<( I )>  = 0 

Massless photon 

U(I) charge symmetry 
log, pot, between charges 

Top, 
Higgs = symmetry 
mechanism ) (I:) v breakdown 

I v, 
<(1)> #: O, <VJ>--0 

Massive photon 

U(1) charge symmetry 
broken 

U(I) topological symmetry 

Short ranged Yukawa type 
force between charges 

Ca) (b) 

<¢,> -- O, <~k> # 0 

Massless photon 

U(I) charge symmetry 
restored 

U(I) topological charge 
broken 

Non-perturbotive In r 
potential between charges 

(e) 

Fig. 4. The phases of the 2 + 1 dimensional Nielsen-Olesen model. (a) The symmetric phase. 
(b) The Higgs phase. (c) The topological symmetry broken phase. 
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when circling around (X1, Yl) or (X2, Y2)" We obtain 

E r] (exp [iq (fiA • d y ] ) ~  exp l(2~q)2t ~g ln~o • (3.11) 

We expect eq. (3.10) to be approximately the correct solution for arbitrary 
cl~ (~* ~). Only an attractive singular potential could cause the vortices to form 
neutral bound objects and ruin the picture. Our result is obtained in an almost 
model-independent manner. 

The Wilson loop test is sensitive only to the excess charge. This is the omnipres- 
ent periodic (in q) screening effect which occurs when the potential is due to topo- 
logical configurations. 

Eq. (3.11) indicates a logarithmic potential between charges because of topo- 
logical symmetry breakdown. Before ~ had acquired a vacuum expectation value, 
there was no logarithmic potential due to the photon because the Higgs mechanism 
had given the photon a mass. Spontaneous symmetry breakdown has restored a 
two-dimensional Coulomb-like force. 

In addition to this topological non-perturbative in r potential, we expect the per- 
turbative In r potential of the unbroken U(1) gauge theory to be present also: recall 
property (ii) of the Nielsen-Olesen vortex, that q~, the charged scalar field, must 
vanish at the vortex. Along the vortex the photon is "massless" in contrast to out- 
side the vortex where it has mass. When topological symmetry breakdown occurs 
the vacuum is filled with vortices until repulsive forces take over. Presumably this 
occurs when they begin to overlap. This means that (~(x)) must be zero since 
vortices occupy all of space-time. The photon must be massless, since (q~(x)) va 0 
was the factor contributing to its mass. The original U(1) charge symmetry is 
restored and another perturbative In r potential due to the photon is expected. The 
sequel is depicted in fig. 4. 

4. Z(AD vortices 

We will now consider 't Hooft vortices. We will proceed in a manner similar to 
sect. 3: first reviewing the soliton solutions and their properties and then perform- 
ing the Wilson loop calculation. 

The topology * of an SU(A r) vortex is most easily discussed for N = 2. For this 
case, a possible Lagrangian is 

. 0=1  2 _ 71F~ v + ~](Ou igAauLa)d~(1) ]2 + I](Ou igAauZa)dp(2)l 2 

+ V(q~O), ~b(2)), (4.1) 

* See previous footnote. 
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where 

V(~0), ~(2)) = Xl (~,) - F~,)) 2 + X2(qb~2) - F~2)) 2 + )k3((1)(1) " c:I~(2))2. (4.2) 

q~(x), ~(2) are two SU(2) triplet Higgs fields, L a ~re the 3 X 3 SU(2) matrix genera- 
tors, and k l ,  k2, k3, F(t), and F(2 ) are constantS. Other Higgs potentials will also 
work. 

Because all fields are in the adjoint representation, the symmetry of  this model 
is SU(2)/Z(2) or 0(3).  The Higgs potential breaks this symmetry completely, so that 
all three gauge fields acquire mass. The remaining bosonic excitations are also 
massive. From this point of  view, there can be no long-range forces. 

As in the Nielsen-Olesen case, there are two types of  topological numbers, one 
related to Higgs fields, the other connected with gauge fields. The solitons have both 
types. 

Consider a static vortex at x = y -- 0 (fig. 2). Go far from it and circulate around 
it. The Higgs fields must take on vacuum expectation values. In going around the 
circle, these values trace out a curve in the minima, M, of  the Higgs potential. Such 
curves are characterized by 7rl(M ). Are there curves in M not deformable to a point 
for the F in eq. (4.2)? M is the set of  pairs of  three-dimensional vectors, oO) = 
dP(I)/F(I ) and 0(2 ) ~- qb(2)/F(2 ) satisfying U(1 ) • V( l  ) = 0 (2  ) " 1)(2 ) = 1,1)(1) ° 1)(2) = 0 .  I f  

we append the vector v(3) = v(i) X v(2), an orthonormal frame is obtained. There- 
fore, M is the set of  orientations of  this frame. Fix a reference frame 1)~1) = (1 ,0 ,  0), 
v~2) = (0, 1,0), 1)~3) = (0, 0, 1). An arbitrary frame is determined by an 0(3)  rota- 
tion of  this reference frame. Therefore, M is the set of  orthogonal transformations. 
Characterize the rotation ~i la Schiff [19] by a vector in the direction of  the rota- 
tion whose magnitude is the angle of  rotation. M becomes isomorphic to the solid 
three-dimensional sphere with antipodal points identified. This space has curves 
which cannot be deformed to a point (see fig. 5). However, a path which goes twice 
along the route of  fig. 5 can be deformed to a point (see fig. 6). Physically this is 
demonstrated in [20]. The fundamental group, 7rl(M), is Z(2), and this character- 

~ s 

Fig. 5. A non-trivial path. Here is a solid sphere with antipodal points identified. This solid is 
topologically equivalent to 0(3). A closed path is said to be trivial if, via continuous deforma- 
tions, it can be shrunk to a point. The path shown here begins at A, makes its way through the 
sphere and ends at A'. The path is closed since A' is the same point as A. Because when A is 
moved A' must move so as to be opposite A, it is impossible to bring A to A' so as to shrink the 
path to a point. This path is non-trivial. 
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. 

(o) (b)  ( c )  (d )  

Fig. 6. The product  o f  two non-trivial paths equals a trivial one. Multiplying two paths, P1 and 
P2, which begin and end at the same point is defined to be the path, P3 = P2 " PI,  formed by 
first traversing P1 and then traversing P2. (a) Here is a path which begins at A, goes to A' via P, 
where it "reappears" at A. It then goes to A' via Q, hence back to the starting point,  A. This 
path is the product  o f  two "fig. 5"  paths. (b) We deform the curve a bit. The new path again 
starts at A, but  instead goes to a point, B, nearby A'. I't "reappears" at B', whence it goes to A' 
v/a Q. This closes the path since A' is identified with A. (c) Move the point B (and hence the 
point, B') around the sphere until it comes to A. (d) Shrink the two loops to the points A and 
A'. Since we have continuously deformed this path to a point, it is trivial. 

izes the vortex. The vortices carry a topological charge conserved modulo two. 
Again do not confuse this Z(2) with the center of SU(2). This is another Z(2), topo. 
logical in nature. Typical non-trivial Higgs configurations are shown in fig. 7. 

The topological number associated with the gauge field is similar to the Nielsen- 
Olesen case. Let A u - a a L a - A u L  , where are the 3 × 3 "angular momentum" 
matrices. 

Y 
[P e x p ( i g ~  N u 'dx~}]c~ 

X 

is the path-ordered product from x to y. Asy  goes around the circle and back to 
the starting point, x ,  (fig. 2), this matrix traces a curve in 0(3). Because we are far 
away, in the region where the Higgs fields are covariantly constant, this matrix is 

,J ..... .~.zktY L, 

(o) 

,y + .-,'....,.,,/ 

., x ~ 

(b) (c) 

Fig. 7. Non-trivial Higgs configurations. (a) and (b) show the behavior o f  two non-trivial Higgs 
configurations far from the vortex. They carry the topological Z(2) charge. (c) shows what 
happens near the vortex: the Higgs fields become almost parallel but  still rotate when going 
around the vortex. At the center they become exactly parallel. 
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precisely the 0(3)  rotation that takes the Higgs frame at x to the Higgs frame at y.  
Again a closed curve in 0(3)  is obtained which begins and ends at the identity ele- 
ment. Again Z(2) characterizes the topological charge. 

1 a Letting &u = ] raAu with ½r a, the Pauli matrices: 

[P e x p ( i g ~  &u " dxU)]c~ = - 8 c ~  , (4.3) 

for a gauge field vortex. The line integral is around a circle containing the vortex. 
The important local properties of the vertex are: 
(i) q50) and co(2 ) become parallel at the vortex (fig. 7c) so that the frame becomes 

ill-defined [21 ] ; 
(ii) for point-like vortices and A~ not varying rapidly in SU(2) space (as the 

vortex is approached, we expect A h  to go to zero rapidly but do not expect the 
color direction to vary rapidly), there is a delta-function-like contribution to the 
flux in the direction of  SU(2) space parallel to ePO) and q5(2): 

~P~l)" F~2 (x, y )  = +~2)" F~2( x, Y) ~ 2~ 8 (x) 8 (y) . (4.4) 
g 

For SU(N) we expect the following to be true. 
(a) The Higgs potential is chosen to break the symmetry completely. The Higgs 

fields are in the adjoint representation. For SU(3) two Higgs fields are sufficient * 
Let ~b~i be the vacuum expectation value of  the ith Higgs field Let o i = ( )  • ( )  
Lldp~[)/F(i), where L l are the Lie algebra adjoint matrices of  SU(N). The symmetry 
is completely broken if for any 7 t, [7 t • L t, o(i)] 4 :0  for some i. 

(b) Vortices are characterized by nl (SU(N)/Z(N)) ~ Z(N). 
(c) Define v(O(x ) = ~ i ) ( x ) f f .  The "ha t"  over ep(i ) indicates that it is normalized 

to 1, so that 

+ ~ i ) ( x )  = ~ o ( x ) / [ ~ { i ) ( x ) , ~ { o ( x ) ] ' / 2  . 

Then at the vortex, there is at least one 7 t such that [~t. L t, v(i)(x)] = 0 for all i, 
where x is the location of the vortex. Let 9: be the set of  vectors, 7, such that 
[7 ! • L l, v(i ) (x)] = 0 for all i. Then arTl + br/2 is in 7 and It/1, r/2 ] is in 5 r, if 71 and 
72 are in ~. The latter is true because 

[[71, n2l ,  v(~)(x)] = - [ [ 7 2 ,  v(,.)(x)], 711 - [[v~;)(x), 71] ,  ~21 = 0 .  

The set of  matrices 7 ¢ - L t for r7 ~ ~r forms a Lie subalgebra which generates a sub- 
group, H, of  SU(N). 

(d) We expect that only one ,/l occurs, so that 5 r is one-dimensional and H 
U(1) (in SU(3), for example, the two Higgs fields might point in the ~r 2 and ~r 3 

1 18 1 1 1 directions so that only one 7 occurs and r/ = ~i ). Furthermore r/ • ~?, has N -  1 
eigenvectors with eigenvalue I[N and one eigenvector of  eigenvalue ( N -  1)/N when 
r~ t • 71 = 2 ( N -  1)]N and ½X t are the fundamental matrix representation normalized 

• We t h a n k  Joe  Po l ch in sk i  for th i s  po in t .  Two Higgs f ie lds  suff ice  for al l  SU(N),  N ~ 2. 
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so that tr ½X t ½X m = ½8 tm. For SU(3) we believe the set of r/satisfying this condi- 
tion is of the form 

" ½X = exp(ic~ • 1) 2x/~-~ ½X a exp( - i a  • ½X) 
2 

for eight vectors, e. 
(e) There is a delta-function-like contribution to the flux of the form 

~t .  FIz (x) ~ 2rr 6 (x) 6(v) ,  (4.5) 
g 

when ~t is normalized so that r / -  r/t = N/2(N - 1). 
(f) When more than one r/l occurs, the flux might rapidly fluctuate along the 

vortex in different color directions. Such fluctuations may be the color zitter- 
bewegung phenomenon [22] associated with particles carrying an internal sym- 
metry. There is the speculative possibility that the particles associated with such 
trajectories are non-Abelian ones and the fields related to them form a representa- 
tion of H. This is highly conjectural and probably impossible to prove. This is a 
quantum mechanical effect. In this way a dual gauge group may be generated [23]. 
See also ref. [21 ]. 

(g) That the flux must be in the subgroup, H, is reasonable physically. At the 
vortex gluonic excitations associated with H are massless, because the symmetry, 
H, is restored. Outside, these same fields are massive. This is a sort of tubular bag- 
like mass-confinement mechanism of field strengths. They are restricted to the 
massless regions of space, i.e., the vortices. The important point is that vortices 
carry tubes of magnetic flux in the group, H. 

For the rest of this paper, we will restrict ourselves to the relevant case of SU(3). 
Let us repeat the calculation of the sect. 3 for SU(3). Idealize to zero-width vortices 
The topological charge is conserved rood. 3. Thus, there are two non-trivial types of 
vortices. One is characterized by 

tr [P exp(ig ~ & .  dl)l = 3 exp(-~lri), 

the other by 

triP e x p ( i g f A  .dl)] = 3 exp(-~Tri) 

(we are now dotting A t into the fundamental representation, ½X t, the 3 × 3 
matrices). The path in the path-ordered product is to be taken around the vortex. 
The 3's in the above equations are trace factors and get replaced by N for SU(N). 
Again, vortices will trace out particle trajectories in three-dimensional Euclidean 
space. If we assign orientations, then oppositely oriented vortices carry opposite 
units of  flux and may be regarded as antiparticles. The vacuum will be a gas of them. 
If they have a positive mass they will be small and sparsely located. If they have a 
negative mass they will fill up the vacuum. The calculation of the Wilson loop in the 



82 

(o) 

S. Samuel / Topological symmetry breakdown and quark confinement 

X, o 

(b) (c) 

Fig. 8. Triplets. (a) is the simplest triplet and (b) is its macromolecule approximation. (c) is a 
more complicated structure. 

presence of these vortices proceeds as in sect• 3, except that q = ½e. The result is 

(tr [P exp(ig : / A "  dx)] ) 

..~ 3::el)t) exp ( - f d 3 x  [[(~u - ~niBu)ff[ 2 + m 2 if* ff + elY(if* ~b)l } 

[same as numerator with Bu = 0] 
• ( 4 . 6 )  

The function, Bu, is given in eq. (3•6)• We have allowed for a mass and for inter- 
actions• In principle, these are determined from the original Lagrangian (eq. (4.1) fol 
SU(2)). Again semiclassical methods and/or local field theory soliton methods [ 13, 
21] should be helpful in this respect. The only input in eq. (4.6) is the commuta- 
tion relations of  vortex fields and Wilson loops, which in Euclidean formulation 
become linking numbers• The factor of  3 is due to color• 

The solutions and conclusions are the same as in the Nielsen-Olesen case. There 
is no long-range potential unless topological symmetry breakdown takes place, in 
which case the potential is a logarithm• We conclude that topological symmetry 
breakdown of  Z(N) vortex loops is not enough to give a linearly confining potential• 

The above calculation considered only closed loops and did not allow for the 
possibility that three flux tubes could annihilate. Charge conservation, being modulo 
three, permits such events• Whether it actually happens is a question which can only 
be answered by finding the effective soliton Lagrangian. It may be that these events 
occur with zero probability• This question must be answered by doing the proper 
analysis of  the original Lagrangian (the SU(3) analog of  eq. (4.1)). No arbitrariness 
is involved• Let us redo the Wilson loop calculation making the ad hoc assumption 
that three vortices can annihilate. Configurations such as fig. 8a as well as more 
complicated ones (fig. 8c) are allowed• We shall call these configurations triplets• 
As indicated by ' t  Hooft  they may be generated by adding a term, Xo(qJ 3 + ~* a), to 
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the Lagrangian of eq. (4.6) *" 

)to ./2= 1Ou~l 2 +m2~*~ + c'l#(~* ~) +-3~ 0 / / 3  + l ~ ' 3 )  . (4.7) 

This is seen by doing perturbation theory in Xo: zeroth order in X o is equivalent to 
our previous gas of interacting loops. Second order (there are no first-order terms) 
in X o produces the configurations of fig. 8a. Higher-order terms yield a gas of those 
fig. 8c as well as more complicated ones. Consider the second-order term from the 
macromolecule point of view. Neglect interactions (i.e., set c1~($* ~) = 0) for sim- 
plicity. 

: )1 ~ = ~ f f ~ ¢  ~ *  exp ~vff2au~*+mo~ ~ +_~o (~a+ ~ .3)  

V1 X2 

o o o xo)(o)=x o 
X(l)(rl)=Xf 

x f f  wx(:) f f  CDX(3) 
x(2)(o)=xo x(3)(O)=xo 
x(2)(r2)=xf x(3)0"3)=x f ' 

7-1 7- 2 

x exp{-f [~,) + rag]- f 
o o 

• "~o El+ 3,e3X--~-~ (~)3 fdaxo fd3x f  Zp+ O(Xg)J , (4.8) 

where 

r3 
1"2 + m ~ ]  1"2 O(~k4) [~x(2) - f + [gx(3) mg] ) + 

o 

oo ,x, ~ NI--1 

Z p = £  9 G C C [jill__ 
NI=I  N2=1 N3=I 1 

E) '`'x':' " :l - - . ~ i l _ l [ - - e  f d 3 x ~ l ) ]  - - -  
i 1 47re 2 

- -~ i2_1[  -- e) 
x[ I-I fd3x}~ )] 

i 2 = 1 i 2 = 1 4rre2 

N3-1 

x [ l ]  
i3=1 

3~=3 ~., (3) (3) 
d3x}3)] I  °[Ixi3 - x i 3 - 1 , -  6)1 

f a Li 1 4~e ~ 
N 1 N2 N3 

Xexp{- ~ /3p- ~ ~/ l -  ~ ~gt} . (4.9) 
i1=1 i2=1 i3=1 

Many other terms can be added which also generate triplets. They are non-local interaction 
terms. They are permitted, of course, since there is no reason to expect the effective soliton 
Lagrangian to be a local field theory. 
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Comments: (a) ~E o is the previously discussed grand partition function for a gas 
of  non-interacting ' t  Hooft  vortex loops. Zp is the partition function for three 
macromolecules which all begin at Xo and all end at xf  (fig. 8b). The endpoints,x 0 
and x f, are arbitrarily located in three-dimensional Euclidean space, hence the inte- 
grals, fd3xo f d3xf. There is also an arbitrary number of  atoms, N1, N2 and N3, 
for each macromolecule; x~ j) is the position of  the sth atom of the jth macromolecuk 
The chemical potential is ta = e2m~/~, where/3 is the inverse temperature and e is the 
length of  a bond. The latter is the cutoff  parameter in our segmented line approach 
to a continuous curve. 

(b) The three macromolecules in eq. (4.9) are ' t  Hooft vortices. Reintroducing 
clY(ff* if), they undergo the same monomer or bond interactions as loops. Each 
carries 27rig units of  flux f romxo  toxf .  

(c) Because ~Z 0 multiplies Zp, the second term, 270Z p, is a system of  an arbit- 
rary number of  closed loops and one triplet configuration. Let 

•p = ~ ~ (k~)2 (4.10) 

be a renormalized triplet activity (the subscript p stands for pair since there is a 
pair of  vertices in figs. 8a and 8b). Higher order terms in kp will generate multiple 
triplet configurations and will lead to ,~o(E~= o (I/M!) k~zpM), a grand partition 
function for a system of closed loops and triplets. The combinatorial factors in 
Feynman rules precisely give the l/M! factor necessary for a grand partition func- 
tion (vacuum bubbles exponentiate). 

Let us redo the Wilson loop integral test, allowing for triplets and more compli- 
cated configurations. Both loops and triplets lead to phase factors dependent on 
linking number. Fig. 9 illustrates some possibilities. 

Trouble arises in trying to repeat the calculation of  sect. 3. Eq. (3.4) is no longer 
valid. It works only for closed loops and not for those of  fig. 8. Fortunately, eqs. 

C 
x 

I exp (2"n ' i /5 )  

Ca) (b) 
exp (4"n' i /3) = e x p ( - 2 w i / 3 )  

(c) 

Fig. 9. Linking number of a triplet with a Wilson loop. (a) The Wilson loop. It has dimensions 
L × L and sits in the x-y plane. The z-axis comes out of the paper. The nearby triplet does not 
link with the Wilson loop so n = 0. (b) A linking configuration yielding the phase factor 

2 2 exp (Snl) and (c) a linking configuration yielding the phase factor exp (-5~i). 



S. Samuel / Topological symmetry breakdown and quark confinement 85 

(3.4) and (3.5) are not the only ones for linking number. Suppose B u is replaced by 
Bu + O,X, where X is an arbitrary smooth function. Then, according to eq. (3.5), 

l 
Ci Ci 

t Ci 

The effect of OuX disappears because of Stokes theorem; there is a kind of "gauge 
invariance" in defining B u. Does this arbitrariness affect the conclusions of sect. 3? 
The answer is no, as seen from eq. (3.8). A change in B u by a,X can be absorbed in 
the solution for ~ by multiplying ~(x) by exp[i(2nq/e) X(x)]. This leads to the 
same action and the same In r behavior of the potential. The Lagrangian of eq. (3.8) 
has a global U(1) invariance which allows a redefinition o f B  u to be absorbed in a 
redefinition of ~. Previously, the 't Hooft vortex Lagrangian (without the Xo(~ 3 + 

*3) term) had this U(1) invariance also. The charges ]rr and -~rr were absolutely 
conserved. Such a system looked like ordinary charge. Only when ~k 3 type terms 
are added can one "see" charge conserved modulo three. This is why the conclu- 
sions of  the 't Hooft model were similar to the Nielsen-Olesen case. Now that trip- 
lets are present we expect different conclusions. We can use the "gauge invariance" 
to define a B u which works. Let S be any two-dimensional surface which spans the 
Wilson loop; the boundary of S is the Wilson loop. For simplicity take S to be a 
surface of minimal area. Let 

Bu(x)  = f g a ( x  - y)  dSU (v). (4.11) 
S 

Here dS u is the surface element directed normal to the surface (the sign of the nor- 
mal is determined by the orientation of the Wilson loop). As a clarifying example, 
take the Wilson loop in fig. 9a: 

B.(x) = -8.3a (z)0(L - x)O(y)O(L -y). (4.12) 

If a curve, x(r),  pierces the surface then f dr fc u ( t)BU(x(t))  is plus or minus one 
depending on the piercing direction. Roughly speaking, B u (x) (of eq. (4.11)) points 
in the direction normal to the surface, acts like a delta function in this direction, 
and vanishes away from the surface. This Bu(x )  is obtainable from the old one by 
a gauge transformation. The old B u (x) (of eq. (3.6)) is in the "Lorentz gauge", 
bUB u = 0. The new one is in a "surface axial gauge". Both B u's have the same curl. 
The new Bu, however, can handle triplets. This follows from the above discussion 
when one does perturbation theory in )t o and returns to the macromolecule analog 
gas. 
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We proceed as in sect. 3. The result is 

(tr [P exp(ig ~ A • d/)]) 
(4. 1 3) 

ffw4 ~ 4 "  exp(- f[l(0. - i2TrB,)4t 2 +m24"4 + c'P(43, 4 .3, 4"4)1) 
[same term as numerator with B u = 0] 

Because of  the singular nature of  Bu, the action in the numerator is infinite unless 
4 vanishes on S. The solutions are as follows. 

(a) When m g > 0 and (4) = 0, 4 = 0 is the solution and there is no confinement 
due to ' t  Hooft  vortices. 

(b) When m g < 0 and (4) 4: 0, the equations of  motion must be solved in the 
presence of  Bu(x ). The precise nature of the solution is described below in paragraph 
(vii). We find that 4 has non-vacuum expectation values near S, that the action goes 
like the area, and that the potential grows with r. Spontaneous symmetry breakdown 
with triplets present gives linear confinement. 

We now make some observations. 
(i) The effect of  choosing a general gauge for B u is as follows: suppose the B u of  

eq. (4.11) is replaced by B u + OuX. When expanding eq. (4.13), the macromolecules 
in a triplet, going from x 0 to xf,  get multiplied by exp [3ix(xf) - 3i×(xo)]. This 
transformation is innocuous only if X(Xo) and X(xf) are multiples of-~Tr. Because 
there is a gas o f  triplets, whose position may be anywhere, general gauges are not 
allowed. The arbitrariness in the triplet's location constrains X(x). A gauge transfor- 
mation causes triplets to be multiplied by unwanted phase factors and ruins the 
Wilson loop calculation. A singular surface gauge must be chosen. 

(ii) What happens if a non-minimal surface is chosen? Does the action go as the 
area of  this surface? Consistency demands that the physics be independent of  S. 
Suppose another non-minimal surface, S', is chosen. The minimal surface, S, and 
the non-minimal surface, S', form a closed surface (fig. 10). Let V be the enclosed 

Fig. 10. Spanning surfaces. The dark line is the Wilson loop. The non-minimal surface, S', is the 
"cup-like" surface below the loop. The minimal surface, S, forms a "lid". Together they 
enclosed the volume, V. 
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volume. Redefine ff by 

i f (x)-+ if(x)  exp[i  2 ~Tr Xv (x)] , (4.14) 

where Xv(X) is the characteristic function for V, that is, Xv(X) = 1 i fx  is in V and 
Xv(X) = 0 isx  is outside V. Plugging into eq. (4.13) with B u given by eq. (4.11) one 
sees that 

(0u~ - i ~Tr B s '  ~k) -+ (0uff - i 27rBSff). (4.15) 

The surface may be moved around by doing a step-function gauge transformation 
where steps occur in multiples of  2rr. According to (i), such a gauge transformation 
is allowed. In eq. (4.15) Bu s' is the B u of  eq. (4.1 1) for the surface, S', and BuS is the 
B u for the surface, S. Thus, for a non-minimal surface, the solution is the one for 
the minimal surface multiplied by a step-function phase factor and leads to the same 
action. The Wilson loop action again goes as the minimal spanning surface area. 

(iii) The solution is periodic in q = 27rn: when a higher-dimensional representation 
is used so that the effective charge is q = 27rn, "screening" occurs and the action no 
longer goes like the area. The Lagrangian 

~ =  l(0u _ iqBu)~12 + m 2 ~ * ~  + c)3(~* ~b ' ~3,  ~ . 3 ) ,  (4.16) 

for q = 27rn has trivial solutions where the phase of  ff jumps by 27rn across the sur- 
face, S. The singularity in taking the derivative of  this phase cancels the singularity 
in Bu. Since the phase of  ff is defined modulo 27r, there is no mismatch of  phases in 

when going around the line of  a Wilson loop; there are no global difficulties with 
this solution. For q = 27rn + 27r, a similar procedure yields solutions whose action is 
the same as q = -+27r. Quarks will be confined but gluons will be screened. Going 
back to the original macromolecule partition function, one sees trivially that the 
Wilson loop is 1 for q = 27rn. However, it is non-trivial that classical solutions repro- 
duce this phenomenon since the saddle point is an approximation. This gives con- 
fidence to our methods. 

(iv) The solution is virtually independent of  c)3(~* if, ~3~'3) although a strong 
potential between vortices may cause them to form dipole-like objects and ruin 
confinement,  an unlikely possibility we feel. Thus confinement is a general phenom- 
enon (almost) independent of  the forces between vortices. However, m 2 being less 
than (or equal to) zero must be the reason that (4) ~ 0 because of  our reliance on 
the analogy with a gas of  loops. By m we mean the physical effective mass which 
includes the energy per unit length as well as entropy embedding effects. There are 
other ways in which m 2 > 0 but (if) 4= 0 (see the potential of  fig. 11). These poten- 
tials result in a liquid-gas-type phase transition discussed by Langer [24] and Cole- 
man [25]. Bubbles of  true vacuum form rather than a dense spaghetti vacuum. The 
phase transition occurs via barrier penetration instead of  vacuum instability. 

(v) The difference between having and not having triplets is the difference 
between having and not having a Goldstone phenomenon with a broken invariance. 
Without triplets the Lagrangian of eq. (4.7) (with X o = 0) has a global U(1) symme- 
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l 
? ( , )  

Fig. 11. A "bad" topological symmetry breaking potential. 

try, because, as we have noted, topological charge, unable to be created or 
destroyed, behaves like ordinary charge. Ordinary charge is associated with a U(1) 
invariance. When spontaneous symmetry breakdown takes place, a Goldstone boson 
occurs. It is this massless particle which creates long-ranged forces which ruin con- 
finement and lead to only a logarithmic potential, although we cannot explicitly 
demonstrate this. Contrast this to when triplets occur. Charges in threes are created 
and destroyed; the symmetry is Z(3), a discrete group. In this case, no Goldstone 
boson occurs to disrupt the linear confinement. Proving triplets exist will be diffi- 
cult. We know no obvious way to use semiclassical methods to calculate X o. It is 
also easy to overlook such configurations using Bardakci's and Samuel's local field 
theory formulation [ 13,21 ] because of the powers of e in eq. (4.9). 

(vi) We conjecture that when (qJ) 4 :0  the symmetry subgroup, H (which is prob- 
ably U(I)) ,  is restored. Along the vortices the Higgs fields are ineffective in breaking 
H, the gauge fields associated with H are massless, and the symmetry is present. At 
the vortex the symmetries associated with the generators commuting with "parallel" 
Higgs fields are not broken. When m 2 < 0, the vacuum is filled with vortices, so that, 
virtually, in every square centimeter of  space the symmetry is restored. We conclude 
that topological symmetry breaking will restore at least a U(1) subgroup of the 
original color group. Hence, in addition to the linear confinement there will be a 
logarithmic potential due to these gluons. This logarithmic potential will be analytic 
in g and calculable via perturbation theory, whereas the topologically generated lineal 
potential is non-analytic in g. 

(vii) What do our solutions look like? In particular, how do our ideas relate to 
' t  Hooft 's  and are there any differences? 

Let us first reproduce this result that tr P [ e x p ( i g ~ A  • d/)] creates a region of  
vacuum with (~(x)) = ~o exp(~Tri) for x inside C (throughout our discussion ~o is 
the vacuum expectation value of  ~ and C is a closed loop contained in a time slice 
of  three-dimensional Euclidean space). In a Euclidean formulation this is seen as 
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follows: consider the propagator of  two Wilson loops 

<triP e x p ( - i g ~ A  -dO] tr iP e x p ( i g ~  ~k "dO]>, 
c' c 

- ( t r  [P e x p ( - i g ~ A  - dO] ) ( t r iP  exp(ig ~ A '  dO]) ,  
c' c 

(4.17) 

where C' occurs at a much later time than C (see fig. 12). To evaluate eq. (4.17), 
resort to the "gas of  loops" analogy used to calculate a single Wilson loop (see eq. 
(3.8)). Choose B ,  (eq. (4.1 I))  to be a sum of  two terms, one resulting from using 
the minimal surface of C and one resulting from the minimal surface of C'. For t 
large, the solution to the equations of  motion is approximately the sum of the solu- 
tions of  each Wilson loop. When the vacuum expectation value of each is subtracted 
off  as in eq. (4.17), the contribution cancels. There are, however, other surfaces 
which span a pair of  Wilson loops, which are not the union of  two surfaces, one for 
C and one for C' (see fig. 12). They look like "hour  glasses". They occur when 
~b(x) ~ ~b o exp(27ri) inside the "hour  glass", in which case, the singularity in B u on 
C and C' is cancelled and reappears on the "hour  glass" surface. The contributions 
from these do not cancel in eq. (4.17). For the new ff the action goes like the hour 
glass's surface area. Classically, the hour glass will try to be small-necked. This, of  
course, is the instability of  a classical closed string. Quantum mechanically, there is 
a sum over all surfaces, each weighted by its surface area (the Nambu action). Eq. 
(4.17) will result in the propagator of  two closed strings. These new solutions yield 
a ~ with the extra phase factor, exp(]Tri), inside. This coincides with 't Hooft 's  con- 
clusion; the physical interpretation of  this process is that tr [P exp(ig ~c A • dO] 
produces a region of ~b o exp(]rri) vacuum which propagates until 
tr [P exp ( - i g  ~/A • dO] destroys it. The Wilson loop operator does, indeed, produce 
regions of  topological Z(3) vacuum. 

Now let us deal with a quark-antiquark system or equivalently put a Wilson loop 

< 
,l 

i= ~ko exp (2ai/5) 

Fig. 12. The propagator of two Wilson loops, C and C'. There are two types of spanning surfaces 
giving contributions; the ones where each Wilson loop annihilates into the vacuum and the 
"hour-glass" ones. 
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antiquark 

C'~ % % ~ \c  
quark 

Fig. 13. A time slice of a Wilson loop. At an instant in time, the non-minimal gauge surface, S', 
and the minimal surface, S, will look like the curves C' and C. The classical solution has the phase 
factor exp(27ri) inside the region, R, enclosed by C and C'. 

in the system. Choose a non-minimal surface, S', as the surface in the surface axial 
gauge. By looking at a t ime slice, we can relate our solutions to a Hamiltonian pic- 
ture. Fig. 13 shows, in this time slice, the curve C', which is the intersection of  S' 
with this slice, and the curve C, which is the intersection of  the minimal surface, S, 
with this slice. C' and C enclose a region, R. The classical solution has ~(x)  = ~0 far 
from R, ~(x)  = fro exp(gni)  well inside R. Along C' the phase of i f (x ) jumps  discon- 
tinuously by  27r. The singularity in 8u if(x) thereby cancels the singularity in Bu(x). 
As x goes from inside R, across C, to a point  far from R, q~(x) must return to fro- 
Thus, in a region surrounding C, ~ undergoes a phase change by 27r. The solution 
must have the boundary conditions that ~(x)  = ~o exp( ]h i )  to the left of C and 
if(x) = fro to the right. The solution which satisfies these constraints will be the 
soliton discussed by ' t  Hooft  [1]. The coefficient of  r in the confining potential  is 
the mass of  the Bloch wall soliton. We have reproduced ' t  Hooft ' s  conclusion exactly 
using our formalism. One also sees the very unphysical nature of  S'. 

b 

C~~ C3 
a Q (b) 

Fig. 14. Quark trajectories in a baryon. (a) A baryon consisting of three quarks is produced at a 
and destroyed at b. In between the three quarks travel along paths CI, C 2 and C 3. (b) A singular 
gauge surface. It consists of three disks, each of which is bounded by a quark trajectory and the 
line from a to b. 
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(viii) The confinement criterion for baryons is different from mesons [22]. What 
replaces the Wilson loop is (see fig. 14a) 

e~e~,ec~,~,2,,[P exp(igj~ t' A-d/)]~ ,[P exp(igfa~ A' d/)]~, 
el  C2 

X [e e x p ( i g £  b ~ "  d/)]a~, . (4.18) 

C3 

Take Cl far from C~ and C3. I f  the action decreases exponentially with area then 
confinement in baryons occurs. Fig. 14a resembles the "dual" of  a triplet. Simi- 
larly, an arbitrary gauge for B u is not possible. One, therefore, might think that 
even without triplets topological symmetry breakdown would conf'me quarks in 
baryons. This is not true, though: first choose a gauge which is singular on three 
surfaces such as in fig. 14b. A gauge transformation, B u -+ B u + OuX, can be per- 
formed as long as x(a) = (27r/3)n and ×(b) = 2rm/3 (a and b are the endpoints in fig. 
14). Hence, a gauge can be chosen for which Bu is smoothed out. I f  a and b are far 
apart, it can be made to look like the Lorentz gauge in the region far from both a 
and b. This will lead to only a logarithmic potential. Triplets are needed for  baryon 
confinement also. Concerning the restrictive effect on gauge choice, the difference 
between baryons and triplets is that the latter form a gas. Endpoints of  triplets can 
be located anywhere; given any space-time point there is a configuration in the 
statistical ensemble with a triplet vertex there. This forces X to be a step function 
in units of  }rr everywhere. On the other hand a baryon constrains X at only two 
points, a and b. 

In the presence of triplets and topological symmetry breakdown, baryons will 
be confined. A gauge for B u singular on surfaces (fig. 14b) must be chosen. One 
must solve the ~k equations of  motion in the presence of such a B u. 

Assuming constituent quarks are far apart and that the energy goes as the area of  
the singular surface, we can see how a static baryon looks. In dual string models, 
there were several speculations: (a) three quarks at the ends of  three strings with 
the other three string endpoints joined (fig. 15a), (b) one quark in the middle of  a 
single string with the other two quarks at the endpoints (fig. 15b), and (c) quarks 
in a triangular string configuration (fig. 15c). Case (c) cannot occur in our formal- 
ism. Case (b) is a special case of  (a) when one of  the three strings has zero length. 
When does (a) occur and when does (b) occur? As an example of  what happens, 
constrain the third quark to be equidistant from the other two (fig. 15a). The 
energy of this configuration is 

E(d) = mc(2X/~ ~ + d  2 + y  - d ) .  (4.19) 

The notation is as in fig. 15a and mc is a constant. The point d is determined by 
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, f  
I, L - - ~  
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(O,d) 

(a) (b) (c) 

Fig. 15. The shape of  baryons. (a) Quarks at the ends of  three strings. A time slice of  fig. 15b 
would yield this configuration. (b) A quark in the middle of  a string. (c) A triangular quark and 
string configuration. The numbers 1, 2 and 3 label the quarks. The dark lines are the strings. 

setting ~E/ad = 0, for which we find that for d ~< ~ L the third quark sits in the 
middle (case (b)), whereas for d > ~ L three strings form (case (a)). This is reason- 
able physically: as the third quark moves farther away, energetically it becomes 
favorable to pull a new string out, rather than stretch two strings. 

Because of the different baryon string picture, baryon Regge trajectories might 
behave differently from meson ones. It may be that at low energies the third quark 
sits in the middle. This would give similar Regge trajectories and slopes. At higher 
energies, third quark excitations might form causing baryon trajectories to become 
different from meson ones. 

Let us summarize the key points when topological symmetry breakdown in the 
't Hooft vortex charge takes place. 

(I) A logarithmic potential is obtained in the absence of triplets and a linear 
potential is obtained in their presence. 

(II) The potential is triality dependent. Representations with integral hyper- 
charge are screened. Representations with fractional hypercharge are confined. The 
potential is periodic in hypercharge. 

(III) Original color symmetries are at least partially restored. 

5. Monopoles 

In this section, we shall show how monopoles arise in the 't Hooft Z(N) model. 
The important conclusion will be that, in the presence of triplets, the phase transi- 
tion from (¢/) = 0 to (~) ~ 0 is a transition from an ensemble of monopole-anti- 
monopole pairs (magnetic dipoles) to a liberated plasma of monopoles and anti- 
monopoles. This phase transition might be compared to that of a two-dimensional 
Coulomb gas [10,26] except that the interaction between monopoles gets changed 
from a linear one to a non-confining one, most likely a Yukawa, (I/r) exp(-#r),  
potential (the expected Coulomb-like 1/r potential probably gets screened due to 
plasma effects [7,8]). 
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Two points need clarifying: in 3 + 1 dimensions for an Abelian theory,  we know 
what a monopole is; we compute f s B  • dA over a closed surface, S. If  21r/e results, 
there is a monopole of  strength 27r/e. First, what is a monopole in 2 + 1 dimen- 
sions? Solitons in 3 + 1 dimensions are instantons in 2 + 1 dimensional Euclidean 
space. The monopoles  in the ' t  Hooft  model will be instantons (like Polyakov's,  for 
example [7]). Secondly, what is a monopole in an SU(3) gauge theory? Without 
Higgs fields, we don ' t  know how to precisely define one, but  with Higgs fields we 
can. A classic example is the ' t  Hooft-Polyakov monopole [30] in the Georgi- 
Glashow model. Recall that ' t  Hooft  defined a gauge-invariant Fur which, in the 
presence of  the "hedgehog" solution, behaved as a monopole field. The Higgs fields 
were an essential ingredient in Fur. Likewise, we can define an Fur, but only when 
H = U(1) * (H, described in sect. 4, is the subgroup in which the flux points). When 
this happens, there is a vector, r /(eq.  (4.5)), constructed out of  Higgs fields which 
indicates the color direction of  vortex flux. This vector transforms in the adjoint 
representation under gauge transformations. Hence 7? • Fur will be gauge invariant 
and can be used to measure the flux **. Normalize r~ so that r? - r / = N / [ 2 ( N -  1)] = 3 
for SU(3). Definition: There is a monopole o f N  Dirac units if  

re .  ~ _ 27rN , (5.1) 

s g 

where S is a closed surface and B i 1 ~ijk~l~,l 
= ~ c  q l ~ "  k . 

With this definit ion triplet configurations are monopole-ant imonopole instanton 
pairs. Perform the measurements,  fs  B • dA, over a sphere enclosing one end of  a 
triplet (fig. 16a). Since each vortex acts like a delta function of  flux, we will measure 
three contr ibut ions of  flux of  27rg units. The total  flux emanating from the endpoint  
is 67rig. Triplets are monopole-antimonopole pairs. Each has three Dirac units. Or- 
dinary vortex loops are not  monopoles because 27rig units enter at one point  but 
exit at another (fig. 16b). 

Without  Higgs fields it is difficult to know what constitutes a monopole,  It is 
important  to know whether it can be defined in a pure SU(3) gauge theory.  Aesthet- 
ically, one would like to do away with the Higgs fields. They are only being used as 
a crutch. 

One might try the following. Take a sphere, S. Break it into small regions, R i. 
Each region, Ri, has a closed boundary,  Ci. Make measurements [tr P exp(ig ~'ci ~. • 
dO]. Define 1/g times the phase to be the "f lux".  Add up all the fluxes to obtain 
the total  flux. Several problems arise: first, 0 units of  flux is indistinguishable from 
27rn + 0 units. In treating triplets, one might conclude that the first two vortices 
contribute 27rig while the last contributes -41rig so that the total  is zero. This pro- 

* For groups, H, larger than U(1), it becomes just as problematic to define a monopole as in a 
non-Abelian gauge theory without Higgs fields. 

liter 
The analog of r~ • /~u for the model of ref. [27] is ~ .  Fur. This is not the 't Hooft Fl~ u but 
it works equally well as noted by Coleman in ref. [281 and emphasized in ref. [161. 
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(o) (b) 

Fig. 16. Monopoles. (a) A sphere of radius r surrounding the endpoint (monopole) of a triplet. 
The total magnetic flux emanating is 6trig. The region A is a disk on the sphere. (b) For a vortex 
the total flux emanating is zero. 

cedure would give an incorrect result. Secondly, it is unclear what is being meas- 
ured because there is no Stoke 's  theorem for non-Abelian gauge theories *. We are 
not really measuring the total  flux: because non-Abelian flux is not  additive like 
Abelian flux, this procedure will almost always yield a non-zero result. Although 
gauge invariant, it is useless. Another  a t tempt  chooses a vector, Vt(x) ,  appropriately 
normalized. If  

½ fv'eijkFi/dS k :~0, (5.2) 
S 

one might say there is a monopole.  For an arbitrary V t, this is not  gauge invariant 
so that  eq. (5.2) is also meaningless. For tunate ly  the Z(A r) ' t  Hooft  model has Higgs 
fields and we are able to circumvent these difficulties. We shall return to this point  
in sect. 8. 

When (q~) = 0 and m 2 > 0, the three string of  a monopole carry energy per unit 
length (these strings are the analogs of  superconductor  vortices). This means that a 
monopole must always be paired very closely to its ant imonopole partner. Detec- 
t ion of  monopoles is difficult unless the sphere, S, in eq. (5.1) is minuscule. Dipoles 
will also have little effect on confinement as the calculations of  sect. 4 demonstrated 
A dipole 's  three strings can link with a Wilson loop only when it is near the quark 
trajectory.  This produces only a perimeter effect and a mass renormalization. Next 
consider what  happens when m 2 < 0 and topological spontaneous symmetry break- 
down takes place. The chemical potential  per atom (in the macromolecule analogy) 

* See, however, refs. [29,16]. 
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is negative and vortices of  large size are favored. One can see that the monopole-  
ant imonopole constituents in a dipole are liberated by considering a triplet with 
endpoints far apart. Focus on one of  the monopoles.  There are three flux strings 
emanating from it. Unlike the previous case, these strings do not  head directly for 
the partner ant imonopole.  Instead they are more in arbitrary directions. The parti- 
tion function (or the Feynman path integral in a particle dynamics description) 
stuns over all these directions. Consider measuring the flux, lAB • dS, flowing 
through a small disk, A, of  a sphere enclosing the monopole (see fig. 16a). In doing 
this measurement only a fraction of  the time will a string pierce A. This averaging 
effect spreads the flux. Symmetry  demands we measure (67r/g) A/4rrr z, where A is 
the area of  the disk and r is the radius of  the sphere. In short, averaging over all 
vortex paths quantum mechanically spreads out the flux so that a "normal"  mono- 
pole with a radial magnetic field is observed. Since the action of  the gauge fields is 
-~  f F~u d3x, we expect * that these monopoles will interact very much like ordi- 
nary ones, with Coulomb-like potentials.  In a semiclassical approximation to the 
Lagrangian of  eq. (4.7), the monopole ' s  activity is (1/3 !) Xo(ff)3. As it should, the 
monopole ' s  density goes to zero when the vacuum expectat ion value of  ff goes to 
zero. This picture of  confinement in the 2 + 1 Z(N) model is similar to Polyakov's 
instanton one [7]. 

6. F r o m 2 + l t o 3 + l  

This section extends the ideas in 2 + 1 dimensions to 3 + 1 dimensions, relates 
the 2 + 1 model to the 3 + 1 one, and indicates that p roof  of  confinement in 2 + 1 
is probably sufficient to prove confinement in 3 + 1. This means that the 2 + 1 
dimensional Z(N) model is more than just a toy laboratory.  It is important  to calcu- 
late the vortex properties and find the effective Lagrangian. Once these are known, 
we will probably know whether gauge theories in 3 + 1 dimensions confine via the 
Z(N) mechanism. 

Just as instantons in 1 + 1 dimensions are solitons in 2 + 1, the Z(N) solitons in 
2 + 1 dimensions are strings in 3 + 1. The vortex solution, which i sx  a n d y  depen- 
dent in EucLidean l + 1 dimensions, becomes t independent  in 2 + 1 and t and z 
independent  in 3 + I. It respectively looks like a point,  a line and a sheet. The latter 
two manifest themselves as loops and closed surfaces and their associated quanta arc 
particles and closed strings. The ideas in Euclidean 2 + 1 dimensions are relevant for 
3 + 1 dimensions because a time slice of  3 + 1 looks like Euclidean 2 + l .  The soil- 
tons in 2 + 1 which were particles tracing out trajectories now become strings trac- 
ing out  surfaces. Hence, in the physical world the topological objects are closed 
strings manifesting themselves in Euclidean space as "Z(N) surface solitons". 

¢' This is true in an "Abelized" gauge where the r~ vector's color direction is fixed, that is, 
spatially constant. 
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Fig. 17. Linking of a sphere and a loop in four dimensions. These three figures show a temporal 
sequence in which a sphere and a loop link. Each t = n value represents a time slice. In general, 
a time slice of a loop and a sphere yields respectively two points and a loop. Exceptions to this 
occur when the loop or sphere are contained within a single time slice, in which case they 
respectively look like a loop ((c) at t = 3) and a sphere ((b) at t = 3). (a) shows the generic case: 
a pair of "particles" and a small "closed string" are produced out of the vacuum. One of the 
particles shoots through the loop, which subsequently shrinks and disappears. The particles 
then annihilate. In (b) the sphere is contained in the t = 3 slice. Again, a pair of particles is pro- 
duced and the two separate. One of them is instantaneously surrounded by the sphere, which 
subsequently vanishes. The two then annihilate. In (c) the loop is contained in the t = 3 slice. A 
closed string is produced. It expands; then with the sudden appearance of the loop, it links. The 
loop instantly disappears and the closed string shrinks and vanishes. 

The key def in ing p r o p e r t y  is l inking number .  In 2 + 1 d imens ions  two non-inter-  

sect ing loops  can link and l inking n u m b e r  is wel l -def ined for o r ien ted  curves. In 

3 + 1 d imens ions  a closed surface and a loop can link. Again, for o r ien ted  surfaces 

and o r i en ted  loops  the  linking n u m b e r  is wel l -def ined.  Fig. 17 i l lustrates using 

" t i m e  lapse p h o t o g r a p h y "  how a sphere * and a loop can link. Because o f  this, a 

Z(N) topo logy  character izes  "surface  so l i tons" .  It works  jus t  like it does  in one 

lower  d imens ion .  An idealized,  tha t  is inf ini te ly  thin ,  surface sol i ton,  S, satisfies 

[tr P e x p ( i g ~ A ' d l ) ]  = 3 e x p ( ~ n i ) ,  (6.1)  

c 

whenever  C l inks wi th  S. Far f rom the surface where  potent ia ls  are pure gauge, eq. 

* Besides spheres there will be tori and other oriented closed surfaces. The most general oriented 
surface is topologically equivalent to a sphere with n handles (an object of genus, n). These 
are allowed; the other two-dimensional surfaces, the non-orientable ones such as the projective 
plane, are not allowed because linking number cannot be defined. 
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(6.1) is valid. Near the surface of  a smeared or physical surface soliton, eq. (6.1) is 
incorrect. We shall always use "idealized" solitons. Whenever a loop, C, links with 
S, there is a map from C into the gauge group (as discussed in sect. 4). These maps 
are characterized by II 1(SU(3)/Z(3)) ~ Z(3). Eq. (6.1) says this map is a non-trivial 
element of  II 1. Similarly, the topology can be discussed in terms of Higgs fields. Far 
from the surface, the Higgs fields take on values in the minimum, M, of  the potential 
Moving along C traces a closed curve in M. Again, these are characterized by II t(M) : 
Z(3). As long as C and S are kept away from each other, there is no way to unlink 
them. Likewise, as one moves C, the topological element Ill(M ) or H I(SU(3)/Z(3)) 
cannot jump since such continuous movements are homotopies. The topology is 
virtually the same as in one lower dimension. 

The topological surfaces will have properties similar to the 2 + 1 dimensional 
case. 

(i) On the surface the Higgs fields become "aligned" so that at least one genera- 
tor commutes with them. We expect only one generator, ~Z?l. 

(ii) For "idealized" surfaces, there is a delta-function contribution to the flux in 
the r2 direction. Let eO)(x) and e(2)(x) be two orthonormal tangent vectors to the 
surface at x. Then 

l (1) (2) 1 t 2rr (x)% (x)% (x):Fuv(x)e~uv = - -  6~(x). (6.2) 
g 

The vector, r/,  is normalized so that I;t r / r / =  3 and 6~(x) is a delta function in the 
variables perpendicular to the surface. More accurately, 

~v(X) = ~ ~ 4,l[")~4(x--y)l dSog (6.3) 3 x.r ~ffc~3#u • 
o 0vet 

surface 
soliton 

(iii) The mass of  the soliton in 2 + 1 dimensions is (roughly) the energy per unit 
length of  the string. The engineering dimensions of  the parameters that give the 
mass in 2 + 1 dimensions have dimensions of  mass squared in 3 + 1 ; couplings 
acquire different dimensions in different dimensions. For example, the mass of  the 
Nielsen-Olesen vortex due to the Higgs potential goes like (@2 [5], In 2 + 1 dimen- 
sions, (q~)2 has dimensions of  mass, whereas in 3 + 1, it has dimensions of  mass 
squared. 

Linking number formulas in four dimensions also exist. Ref. [17] gives 

= f f 1 ( "V - X)Ot n ~1 x~S dSuv yCC dy~ :e~uv ly xl 4 

1 s 1 : 

f f f 1 [y(s)-x(o,r)L 
- 2n2 o do o dr o ds :e~u, ly(s)Z-X~-,,r)-~ 
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X dy~O) dx, (o ,  r) dxdo ,  r) 

ds do dr 

= ~ ½Buv(x ) dSuv(x), (6.4) 

s 

where 

1 (v - x ) ~  
B,v(x)=~-2  ~ ec~[3,v lY x[4 @13- (6.5) 

c 

In eq. (6.4) S is a closed oriented surface, dS,~ is the surface element, C is a closed 
oriented curve, dy~ is its line element, and 1/27r 2 is the volume of  the three-dimen- 
sional unit sphere. In the second form, the curve, C, is parametrized by s so that 
y(s) is the location at " t ime",  s, y(0)  = y(1),  and dy~/ds is the "velocity". The 
variables o and r parametrize the surface in the same manner as in dual string theory 
They take on values in the unit square, and x(o,  r) is the location of  the surface at 
that (o, "c) value. Because the surface is closed,x(0, X) =x(1 ,  X) =x(X, 0) =x(X, 1) = 
a constant for 0 ~< X K 1, that is, the boundary of  the square is mapped to the same 
point. The linking number is an integer. 

I f  one were doing static electromagnetism in 4 + 1 dimensions, the Buy(X) of eq. 
(6.5) would be the magnetic field at x produced by a unit current flowing through 
C. It has a "vector field" gauge invariance: 

Buy(X) --* B,v(X) + 3uXv(X) - 3vXu(X) . (6.6) 

Under the transformation of  eq. (6.6), eq. (6.4) is unchanged. This means that there 
are many other permissible forms for Buy. There is also a gauge invariance for the 
gauge since Xu -* Xu + 3uX leaves eq. (6.6) invariant. 

The vacuum will be a gas of  Z(N) closed surfaces. This will be an interesting 
statistical mechanics ensemble. Such a gas might yield a field theory for strings for 
which the methods of sects. 2 - 4  could be mimicked. Even in the absence of  inter- 
actions between points on the surface, where a free field theory of  closed strings is 
expected, constructing such a field theory will be difficult *. We are, therefore, un- 
able to calculate the Wilson loop. Such a calculation involves summing over the gas 
of  surfaces, weighting each surface, S, by the factor 

1 exp [~rri f Gu0') (6.7) 
s 

with Buy given by eq. (6.5) for C being the Wilson loop. Instead, we make the fol- 
lowing observations and conjectures: assume that the soliton in 2 + 1 dimensions 

* Kaku and Kikkawa have constructed a field theory for strings. Unfortunately, it is non-covari- 
ant and hence not useful from our point of view. See ref. [30]. 
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X 

Fig. 18. A triplet surface. This surface is contained in the z = 0 slice of space-time, hence the z 
direction is not shown. The object is like a smaller bubble stuck to a bigger one. 

99 

has a positive mass so that in 3 + 1 the surfaces carry a positive surface energy. The 
topological sector generates a theory of  strings. Such closed strings do not  carry 
quantum numbers. They occur as space-time events: a point  suddenly appears, 
sketches into a ringlet, and shrinks away. These ringlets are restricted to be small 
and to last for brief durations because of  the large surface action generated. An 
exception to this might be the tachyons in the dual string model. These two low- 
lying states, as minute closed strings, resemble particles of  negative mass squared. 
They trace out  long trajectories which, because there is no conserved quantum 
number,  can begin or end in the vacuum. As long thin cylinders, they have little 
effect on Wilson loops except for possibly a mass renormalization; such thin tubular 
configurations are unlikely to link. All in all, such a system does not produce con- 
finement. 

Because of  the Z(3) structure of  the topology,  there may exist other types of  
surfaces. These are the analogs of  the 2 + 1 triplets. Fig. 18 shows a " t r iplet  surface '~ 
imbedded in the slice, z = 0. The temporal evolution of  this configuration is shown 
in fig. 19. Time slices sometimes yield triplets and sometimes ringlets. These string 
configurations are very different from interacting dual strings. The latter interact 
by breaking or by joining ends as well as a "four-point"  interaction where two 
strings touch in the middle and exchange string halves. These interactions occur at 
a specific location at a particular time. Fig. 19 shows that triplet surfaces look like 
an open string circumscribed by a closed one-or more accurately three open strings 
joined at the ends; the three are in constant interaction. Thus, this string theory is 
unlike anything previously considered in dual models. 

Triplet surfaces contain, of  course, monopoles.  The intersection of  the three 
surfaces is a curve which is to be identified with the monopole ' s  trajectory.  Like 
closed soliton surfaces, triplet surfaces must also be assigned an orientation.  This 
induces an orientation on the boundary,  that is, for the monopole loop *. Hence, 

* The definition of orientation for a manifold can be found on page 1 19 of ref. [ 31 ]. The way 
in which an oriented manifold induces an orientation for its boundary can also be found here. 
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t= l  t = 2  t = 5  t = 4  t : 5  t = 6  t = 7  

Fig. 19. The  t e m p o r a l  s equence  o f  fig. 18. 

as should be the case, the monopole trajectories are oriented and closed, indicating 
a conserved quantum number (monopole charge). Since three surfaces span the 
monopole loop, the system at a particular time looks like a monopole-antimonopole 
pair joined by three vortices (fig. 8). Because these three vortices carry a positive 
energy per unit length, the monopole-antimonopole pair are inexorably bound by a 
linear potential. Triplet surfaces, comprised of the monopole loop and three spanning 
surfaces, must be small and hence monopole vacuum loops are rare events. These 
"neutral" objects have few physical effects. As in one lower dimension, there is no 
confinement. The interesting case of topological symmetry breakdown, where con- 
finement is expected, will be discussed shortly. We first must show how linking 
number can be defined for triplet surfaces. 

Eq. (6.4) no longer works for triplet surfaces. This is the higher-dimensional 
analog of the problem discussed in sect. 4. The resolution is similar: a singular "sur- 
face axial gauge" for Buy must be used. Let Sc be any surface which spans the Wilson 
loop, C. Then 

SC f geuva38 ( x - y )  dSc~3(y), (6.8) Buy (x) = 1 4 

SC 

works. This B so, when substituted into eq. (6.7) and integrated over the triplet sur- 
face, S, yields the correct phase factor. The surfaces Sc and S should not be con- 
fused; the former is any surface whose boundary is the Wilson loop while the latter 
is the triplet surface. It is not hard to find a gauge transformation which moves Sc: 
let S~ and S~ be two Wilson loops spanning surfaces. They form a closed surface. 
Let V be any volume, i.e., a three-dimensional manifold, whose boundary is their 
union. For y E V, let r/u(y ) be the vector orthonormal to V at y in four-space. Then 

Xu(x) = f r/u(Y)64( x - y ) d 3 y  
y ~ V  

1 = f ~. eua~,rg4(x- y) dVat~'(y), (6.9) 
y E V  

S 1 S 2 
when used in eq. (6.6) affects a gauge transformation from BuC to B,, c. Actually, we 

1 2 
have not defined how the sign of r/, is to be chosen. One choice gauges BSc into BSc ; 

2 . 1 ~ . . gtv .uv 
the other gauges Bsc into BSc. The fact that V is not umque (there are many volumes 

/2v /,ev 

V, whose boundary is S~ tO S~) reflects the fact that the gauge transformation is not 
unique ("a gauge invariance for the gauge") as previously discussed. 
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What would happen if a general gauge was chosen in eq. (6.7)? Take the Buu of 
eq. (6.8) and perform the gauge transformation Buy -+ Buv+ auX v - O~Xu- Then, 
each of  the three surfaces comprising a triplet surface would contribute an extra 
factor 

f(~uXv-~vxu) dSuv = f X u d x u = f  xladx u.  (6.10) 
S ~S C M 

The boundary o f  each surface is CM, the monopole loop. Triplet surfaces would get 
multiplied by the unwanted phases 

e x p ( 3 i f  Xu dxU). (6.11) 
cM 

This is innocuous if:~cMXu dx u = 2nn. For a gas of  triplet surfaces, we must require 
that 

Xu dxu = -~rrn , (6.12) 
c 

for all loops, C. By shrinking C to a point in a plane, P, eq. (6.12) implies that 
OuXv - auXu must be singular on the plane, P±, perpendicular to P. Hence gauge 
transformations can only move S c around and eq. (6.8) is the most general form for 
Buy; one cannot smooth Buu out. 

The interesting case is when topological symmetry breakdown occurs, that is, 
when the vortices in 2 + 1 dimensions have a negative (or perhaps zero) mass 
squared. Then, topological surfaces are expected to have a negative surface action 
density and will populate the four-dimensional world. This implies that the closed 
topological strings will have a negative Regge slope, a thought that, at first, seems 
preposterous because o f  the infinite number of  tachyons. However, the situation is 
not as bad as it appears and even has a simple physical interpretation. First of  all, a 
total collapse is not expected. The same repulsive vortex forces which stabilize the 
proliferation of  closed loops in 2 + 1 dimensions will be present in 3 + 1 dimensions 

Table 1 

Wilson lattice gauge theory 

electric fields 

quarks 

closed electric string ~ electric fluctuations 

positive slope -~- zero or negative slope 

SU(3) gauge theory 

magnetic fields 

monopoles 

closed magnetic string +-, magnetic fluctuations 

positive slope ~ zero or negative slope 
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and will stabilize the vacuum *. Secondly, triplet surfaces will become monopoles 
with their magnetic flux spread out. Consider, for example, a large monopole loop 
with its three topological Z(3) surfaces. Unlike the case, m 2 > 0, where the surfaces 
are the ones of minimal surface area, the surfaces can be anywhere. The quantum 
mechanical sum over all possibilities will make the flux evenly distributed rather 
than being focused in tubes. We conjecture that a negative slope parameter for these 
types of strings results in "fields". By this, we mean a string theory gets transformed 
into a field theory. There is another example of this phenomenon which should 
clarify what we mean, namely Wilson's lattice gauge theory [33]. Keep the lattice 
spacing finite. In the strong coupling limit the electric field is focused into tubes. 
States of two quarks connected by an electric flux tube or a torus of flux are per- 
missible. The theory has strings with positive slope parameters. As the coupling 
constant is lowered, the electric flux begins to spread out more and more until a 
phase transition occurs where it spreads out uniformly in the usual Coulomb-like 
manner. At the phase transition, spontaneous symmetry breakdown of electric 
strings has occurred. The effective surface action density (including entropy con- 
tributions) has become zero. We conjecture that the phase transition from (~) = 0 
to (~) 4:0 is the same phenomenon except with "dual" magnetic fields (see table 1). 
This is what we mean by strings of negative Regge slope being metamorphosed into 
fields. When this happens topological surfaces become magnetic fluctuations and 
monopoles bound in dipoles become liberated. These monopoles will now be instru- 
mental in confining quarks. I f  m 2 < O for 't Hooft vortices and triplets exist in 2 4- 1 
dimensions, then in 3 ÷ 1 dimensions monopoles, previously confined in monopole- 
antimonopole pairs by magnetic flux tubes, get liberated resulting in a monopole 
plasma. 

We conjecture that the phenomena exhibited in 2 + 1 dimensions will be present 
in 3 + 1. Already discussed are magnetic fluctuations due to close surface solitons 
and monopoles due to surface triplets. Also guaranteed is that the non-perturbative 
potential will be "periodic in charge" because of eqs. (6.4) and (6.7). This screening 
phenomenon means that integral hypercharge multiplets will not be confined. Any 
approximation scheme to a Wilson loop calculation should be able to reproduce 
this phenomenon. Next, we expect that topological symmetry breakdown will 
restore the symmetry associated with H. The reason is the same as in one lower 
dimension: the Z(N) surfaces will fill up the vacuum until overlap repulsive forces 
take over. Since H is restored on these surfaces, H will be restored virtually every- 
where. Finally, several arguments show why confinement in 3 + 1 dimensions will 
O c c u r .  

(i) The vacuum is a gas of monopoles. Roughly speaking, such a system confines 
because of a "dual Meissner effect" [8,34]. Just as a gas of current loops confines 
monopoles in a superconductor, a gas of magnetic current loops confines charges. 

Bardakci has explicitly shown this in a string model [32]. 
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(ii) The Wilson loop calculation involves a system with an area constraint (the 

"surface axial gauge" constraint of  eq. (6.8)). If  a non-trivial situation exists, the 
action must go as the area. 

(iii) A time slice of  3 + 1 dimensions looks like 2 + 1 dimensional Euclidean space 
Confinement in 2 + 1 dimensions might indicate confinement in 3 + 1. Putting a 
quark loop in a time slice appears to reduce the calculation to one lower dimension. 
Let us define the term, dimensional reduction, as when a Wilson loop in such a time 
slice of  3 + 1 can be calculated in 2 + 1 as a static situation. Dimensional reduction 
does not always occur. Consider, for example,  the lower-dimensional analog: a com- 
parison of  the 1 + 1 dimensional instanton gas of  Nielsen-Olesen vortices to the 
Nielsen-Olesen model  in 2 + 1 dimensions with vortex topological symmetry  break- 
down. The former looks approximately like a time slice of  the latter. However, sect. 
3 obtained a logarithmic potnetial  for the 2 + 1 model, whereas a linear potential  
occurs in 1 + 1 dimensions. The reason for this is clear. When the Wilson loop is 
placed in a time slice, the Bu of  eq. (3.6) is non-zero for all times. The Wilson loop 
affects the vortex gas throughout  the 2 + 1 dimensional world and not just at one 
time. Dimensional reduction does not  happen. If, however, B u were zero outside 
the time slice, it would happen. This is the case for the ' t  Hooft  model with triplets. 
The B u of eq. (4.12) has its support in the time slice containing the Wilson loop. 
This is why linear confinement occurs: the calculation dimensionally reduces to the 
1 + 1 instanton calculation, which is known to confine. Returning to the physical 
world with triplet surfaces absent, the Buy of eq. (6.5) is non-zero for all times. For 
this situation, the calculation does not dimensionally reduce. If  Buy were forced to 
be in a gauge with the support  of  Buy in a time slice, then topological symmetry 
breakdown would yield the logarithmic potential  obtained in 2 + 1 dimensions, but  
this is not  the case. Our guess is that the action will go like fB2uv d4x so that  closed 
surfaces yield only a 1/r potential .  When there are triplet surfaces the situation is 
completely different; Buy is forced to be in a "surface axial gauge" such as eq. (6.8), 
the calculation dimensionally reduces and a linearly confining potential  (the same 
one as in sect. 4) is obtained.  With triplet surfaces present, a time slice of  the real 
world does indeed look like the 2 + 1 Z(N) model with triplets and confinement.  

7. Relation to Mandelstam's scheme 

There is a similarity between Mandelstam's confinement scheme [8] and topo- 
logical symmetry  breakdown with triplet surfaces. We shall touch upon the common 
points and differences. Here is a quick review of  his quark confinement.  

(a) The Coulomb gauge contains a term E ~  • E ~  in the Hamiltonian where 

E~ = V [V26 ~7 - gfZ~TA~ i Vii -107  . (7.1) 

The inverse operator ,  [V26 ~ - gf~TA~ i 7 i ]  - 1  , a k i n  to lax - b[ - !  in a one-dimen- 
sional quantum system, will produce infinities unless the vacuum is suitably chosen. 
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(b) In the Az = 0 axial gauge, this problem becomes equivalent to whether local 
(x, y) dependent (but z-independent) gauge transformations annihilate the vacuum. 
The bare vacuum fails to do this and makes a poor starting point to perturb around. 

(c) A vacuum comprised of monopoles has the right properties: the Dirac tubes 
(in the Az = 0 gauge, the Dirac strings become tubes for finite-sized smeared-out 
monopoles) produce random gauge rotations. Such a state will be a singlet under 
local (x, y)  dependent gauge transformations. It is a candidate for the vacuum state. 

(d) Such a monopole gas confines in not so different a way from the Polyakov 
model [7]. 

In short, Mandelstam's gas results in (i) a restoration of SU(3) gauge symmetry 
and (ii) quark confinement. 

Likewise, we have shown similar results when topological symmetry breakdown 
occurs in the presence of triplets: a monopole vacuum is generated and at least a 
global U(1) color symmetry is retored. We have been unable to prove the restoration 
of the complete SU(3) gauge invariance. Like Mandelstam's vacuum, confinement 
is a consequence. The ideas of sects. 4 - 6  neatly jell with Mandelstam's. 

We have given support to Mandelstam's work in showing how monopoles 
naturally arise in an SU(3) gauge theory. The type of monopoles Mandelstam has 
been using (Wu-Yang ones [35]) are probably different from those in an SU(2) 
gauge theory. For SU(3) our monopoles carry 67rig units of flux. We have also 
elucidated on the dynamics of the system; in particular, how negative Regge slopes 
transform magnetic flux tubes into magnetic fields. We have not shown why topo- 
logical symmetry breakdown takes place. If Mandelstam is correct then he has given 
us the reason: such a breakdown occurs because of the lax - b I - l  problem. It is a 
matter of symmetry, monopoles and disorder. In essence, the difference between 
no confinement and confinement is the difference between an ordered system with 
a broken symmetry and a disordered system with monopoles acting as the symmetry 
restoring agent. 

8. Open questions 

(A) How does the phase diagram look for an 't Hooft SU(N) gauge theory? In 
particular, how many phases are there ? In fig. 4, we have drawn three phases, corre- 
sponding to (a) a normal boson potential, (b) a Higgs boson potential, and (c) a 
Higgs soliton potential. ' t  Hooft conjectured that phases (a) and (c) are the same. 
He argues that the soliton's mass squared must be proportional to the Higgs mass 
squared, the proportionality sign being negative since when the Higgs bosons are 
tachyonic the solitons have a positive mass. Analyticity implies that the solitons 
are tachyons when the bosons have a positive mass squared. We feel this argument 
needs further justification since phase transitions induce non-analyticities. This 
remains an open question. In general, it is important to determine the phase dia- 
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gram so that the confinement phase (if it exists) and the coupling constant values 
which yield this phase can be found * 

(B) Can a string field theory be constructed to describe the statistical ensemble 
of  topological surfaces? As previously discussed, with such a construction the calcu- 
lations of  sects. 2 - 4  could be performed in 3 + 1 dimensions. 

(C) What effects do instantons have? Callan, Dashen and Gross have shown that 
instantons create a paramagnetic vacuum which tends to expel electric fields [2]. 
This will surely affect the dynamics of  topological surfaces. Instantons might aid 
in (or even cause) the topological symmetry breaking. Roughly speaking, the sur- 
faces should couple to instantons because monopoles and associated magnetic fields 
are long ranged. They can contribute to 

fFgv~ "gu d 4 x  , ( 8 .1 )  

in contrast to short-ranged field configurations which cannot be due to the fact that 
eq. (8.1) can be written as a surface integral. 

(D) Are Higgs bosons necessary? As indicated in sects. 3 and 4, topological vor- 
tices can be characterized solely in terms of  gauge potentials by using path-ordered 
products. This suggests that, perhaps, they exist independently of  the Higgs fields. 
We feel this may be the case for an SU(N) gauge theory but certainly not for a U(1) 
theory. The Higgs bosons in the 2 + 1 dimensional Nielsen-Olesen model serve two 
important purposes: 

(i) they smooth out the short-distance singularities which would otherwise occur; 
(ii) they ensure that exp(ie fx y A •dl) returns to 1 when y loops around the vortex 

and returns to x.  
Purpose (i) is not as important as purpose (ii) for the existence of  vortices. Pur- 

pose (i) is a short-distance phenomenon which might be cured quantum mechan- 
ically or through renormalization. In the absence of  Higgs fields, there are still finite- 
energy vortex configurations (obtained by using the classical values of  A, (x)  when 
the Higgs fields were present) although they are not energy minima. In contrast 
purpose (ii) is essential. With Higgs bosons, the Higgs field must take on values in 
the minima of  the potential and be covariantly constant far from the vortex. This 
means that exp(ie fx  y A • d/) is precisely the rotation (in this case, phase) which 
transforms the classical Higgs field at x to its value at y. As one goes around the 
loop and returns to x, this guarantees that ~A •dl = 2rrn/e. This means that magnetic 
flux gets quantized. Without Higgs fields, configurations such as Ac~(x) = a(p)/p,  
with a(p )  = 0 at the vortex and a(p)  = c/e  far away, have finite energy. Here, c is an 
arbitrary constant. This means that flux is not quantized and f A  • dl = 2~c/e  is 
arbitrary. The solitons lose their identity as tubes of  conserved quantized flux. 
Instability occurs because tubes of  27r/e units can dissolve into many smaller tubes, 

~r 
Ref. [36] is of  interest in this connection. 
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say n tubes of 2rr/en units. Thus purpose (ii) is the essential stabilizing effect of 
Higgs bosons in the Nielsen-Olesen U(1) model. 

In the non-Abelian case, purpose (i) still functions but it is possible that property 
(ii), which is now modified to 

[P exp(ig f A"  dl)]~t~ = [a center of the group element]c~ , (8.2) 
c 

for loops, C, which encircle the vortex, holds even in the absence of Higgs fields. 
This is because Yang-Mills theories are self-interacting. These self-interactions 
possibly act as a replacement for the Higgs boson gauge field interactions. If a flux 
tube, at some instance, points in the z direction, thus contributing to r~tB/, two of 
the three gauge potentials might act like the two Higgs fields while the third is the 
flux-generating gauge potential. This point needs further clarification, but Yang- 
Mills theories offer the aesthetically pleasing possibility of eliminating Higgs fields 
without ruining any of the physical results discussed in this paper. 

If the Higgs fields are eliminated, the problem of defining a monopole returns. 
Previously, the vector, r/t, constructed out of Higgs fields, was used. We now must 
manufacture an r/t using gauge potentials. There are many ways of doing this: at 
each point,x,  attach a closed loop, Cx. Define 

[ e x p ( n t ( x )  ~ l i x )la~ = [P exp(~ /A- d/]c~ . (8.3) 
Cx 

In eq. (8.3) the path ordering starts at x, proceeds along Cx, and ends at x. Beginning 
at any other starting point is not possible. The vector, r/l(x), transforms in the octet 
representation under gauge transformations. Using the magnetic field, Bi(x ) = 
~ei]k~t(x)F]g (x), one can "test" for monopoles by integrating f B  • dS over closed 
surfaces. Of course, this method generates an infinite number of magnetic fields, all 
of which are gauge invariant. Only a prudent choice of the Cx will yield a Bi(x ) with 
the desired properties, that is, that this magnetic field be the one contained in vor- 
tex flux tubes and be the one associated with the monopoles contained in triplet 
surfaces. 

(E) Is there a non-Abelian dual group? Implicit in our discussion is the dualities 
between magnetic fields and electric fields, monopoles and charges, etc. Table 1 
illustrates some of these. When there are Higgs bosons and a unique r7 l, i.e., H = U(1), 
the symmetry group of the surfaces (and monopoles) is either U(1) or Z(3) depend- 
ing on whether triplets exist. If  the Higgs fields can be eliminated, will there be a 
non-Abelian dual group? This question will be hard to answer because of the quan- 
tum mechanical effects inherently associated with an internal symmetry group, 
namely, color zitterbewegung [22]. This goes beyond our discussions which have 
been classical in character. 
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9. Summary 

To prove confinement the following must be shown: 
(a) that the ' t  Hooft Z(N) solitons in 2 + 1 dimensions have a phase with m 2 < 0 

and that there are repulsive forces which stabilize the vacuum; 
(b) that Xo(~b 3 + 4 .3) (or similar) terms exist, that is, triplets are present; 
(c) that a time slice of  the four-dimensional world is described by the physics of 

the 2 + 1 dimensional model. 
When the above are satisfied, we expect: 

(i) confinement; 
(ii) restoration of  some or all of  the original color symmetries. 
Without (b) topological symmetry breakdown gives only a In r potential in 2 + 1 

dimensions and (most likely) a 1/r potential in 3 + 1. Showing (a) and (b) is the 
next calculational step. These problems can be approached by using: 

(i) Semiclassical methods [37]. These can determine how the soliton's mass 
depends on the parameters in the Higgs potential. 

(ii) A field theory for solitons [13,21]. This should be useful in determining the 
forces between vortices and whether the vacuum stabilizes for rn 2 < 0. 

(iii) Mandelstam's operator methods [8]. These should be applied to Z(N) type 
monopoles. These methods might be useful in determining vacuum instabilities and 
hence why the soliton's mass is negative. 

(iv) Halpern's dual field strength formulation [38]. This approach might exhibit 
the topological solitons and their properties directly. It might also be helpful in 
determining whether vacuum instabilities exist. 

Most difficult will be showing (b), that triplet configurations exist, although 
there is no a priori reason (in the sense of  a conservation law) why they shouldn't. 

Additional problems particular to four dimensions are: 
(a) Whether the closed soliton strings have negative Regge slopes and whether 

this makes sense as this paper suggests. 
(b) Whether triplet surfaces occur. A new type of  dual string model is needed. 
(c) Whether the Higgs potential can be done away with. Are there singular but 

stable topological solitons in pure Yang-Mills theories? 
(d) If  (c) holds, there are no mass scales. How does dimensional transmutation 

[39] * come about? 
We wish to emphasize the following points: 

(a) The non-Abelian (and to a lesser extent non-perturbative) nature of  the con- 
finement. The selfsame method can at most yield a in r potential for a U(1) theory. 
This is because monopoles, i.e., triplets, cannot occur in an Abelian theory and they 
are essential in the linear confinement. 

* Thorn has presented a pedagogical example of dimensional transmutation in the two-dimen- 
sional quantum mechanics problem with a potential g62(x). See ref. [401. 
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(b) The potential between quarks is expected to have (i) a linear piece due to 
triplet surfaces, (ii) most likely a 1/r non-perturbative large-r piece due to closed 
surfaces, and (iii) a (possibly screened or antiscreened) perturbative piece which 
dominates the short-distance physics. 

Let us conclude by summarizing what we have shown. 
(i) In 2 + 1 dimensions we have exhibited how to do calculations when topo- 

logical symmetry breakdown occurs by using a macromolecule analogy. We believe 
this will form the prototype of  future topological symmetry breakdown calcula- 
tions. 

(ii) We have extended ' t  Hooft 's  confinement scheme in 2 + 1 dimensions to 
3 + 1. Previously, only an operator algebra yielding different phases was obtained. 

(iii) We have discussed the dynamics of  quark confinement, namely, how mono- 
poles naturally arise in a non-Abelian gauge theory; how negative Regge slopes make 
sense, change Z(N)strings into magnetic field fluctuations, generate the usual 1/r 
radial monopole magnetic field and liberate the monopoles (of  the bound monopole- 
antimonopole pairs) which are so instrumental to quark confinement. 

(iv) We have connected the physics of  the Z(N) models to Mandelstam's confine- 
ment scheme. 

In short, we believe we are at the verge o f  proving conf inement  in non-Abelian 
gauge theories. 

The author thanks Korkut Bardakci for delightful discussions, particularly on the 
properties of  the Z(N) vortex. Korkut Bardakci's polemical questions often forced 
the author to clarify to himself his ideas and, in one instance, this resulted in a 
revamping of  the author's thinking. The author thanks him for his excellent guidanc( 
I would like to thank Joe Polchinski for discussions concerning the nature of  The 
Saddle point solutions. 
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